【題目】已知圓,過點的動直線與圓交于、兩點,為坐標原點,且.

(1)求的軌跡方程;

(2)當時,求的方程及的面積.

【答案】12,

【解析】

1)由的中點,根據(jù)圓的性質(zhì)可得,設(shè)出,利用向量數(shù)量積的坐標表示可得結(jié)果;

2)設(shè)的軌跡的圓心為,由 得到,求出直線的斜率,再由點斜式可得的方程,由點到直線距離公式求出的距離,再由勾股定理求出,代入面積公式可得答案.

1)由圓可知圓心,半徑為4,

設(shè),因為,所以的中點,

所以

所以,即,

化簡得.

2)由(1)知,的軌跡是以為圓心,為半徑的圓,

由于,故在線段的垂直平分線上,

在圓上,從而

所以,所以直線的斜率為

所以直線的方程為,即,

到直線的距離為

的距離為,

所以,

所以的面積為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了解高三復(fù)習效果,從高三第一學(xué)期期中考試成績中隨機抽取50名考生的數(shù)學(xué)成績,分成6組制成頻率分布直方圖如圖所示:

(1)求的值及這50名同學(xué)數(shù)學(xué)成績的平均數(shù);

(2)該學(xué)校為制定下階段的復(fù)習計劃,從成績在的同學(xué)中選出3位作為代表進行座談,若已知成在的同學(xué)中男女比例為21,求至少有一名女生參加座談的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某臺函數(shù)計算器上有一個顯示屏和兩個操作鍵.若按一下第一個操作鍵,則將原顯示屏上的數(shù)變?yōu)?/span>表示不超過實數(shù)x的最大整數(shù));若按一下第二個操作鍵,則將原顯示屏上的數(shù)變?yōu)?/span>.稱按一下任意一個操作鍵為一次操作.現(xiàn)在顯示屏上的數(shù)為1.問:

(1)是否可以經(jīng)過有限次操作,顯示屏上出現(xiàn)整數(shù)2000?說明理由.

(2)小于2000的整數(shù)中有多少個數(shù)可以經(jīng)過有限次操作在顯示屏上出現(xiàn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的三邊長分別為a,bc,其面積為S,則的內(nèi)切圓O的半徑.這是一道平面幾何題,其證明方法采用“等面積法”設(shè)空間四面體四個面的面積分別為積為V,內(nèi)切球半徑為R.請用類比推理方法猜測對空間四面體存在類似結(jié)論為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《周髀算經(jīng)》中給出了弦圖,所謂弦圖是由四個全等的直角三角形和中間一個小正方形拼成一個大的正方形,若圖中直角三角形兩銳角分別為,且小正方形與大正方形面積之比為,則的值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】3本相同的小說,2本相同的詩集全部分給4名同學(xué),每名同學(xué)至少1本,則不同的分法有( )

A. 24B. 28C. 32D. 36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)e為自然對數(shù)的底數(shù),e≈2.718).對于任意的(0,e),在區(qū)間(0,e)上總存在兩個不同的,,使得,則整數(shù)a的取值集合是_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某海濱浴場一天的海浪高度是時間的函數(shù),記作,下表是某天各時的浪高數(shù)據(jù):

0

3

6

9

12

15

18

21

24

1.5

1.0

0.5

1.0

1.5

1.0

0.5

0.99

1.5

1)選用一個三角函數(shù)來近似描述這個海濱浴場的海浪高度與時間的函數(shù)關(guān)系;

2)依據(jù)規(guī)定,當海浪高度不少于時才對沖浪愛好者開放海濱浴場,請依據(jù)(1)的結(jié)論,判斷一天內(nèi)的之間,有多少時間可供沖浪愛好者進行沖浪?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標系中,曲線,曲線 .以極點為坐標原點,極軸為軸正半軸建立直角坐標系,曲線的參數(shù)方程為為參數(shù)).

(1)求,的直角坐標方程;

(2),交于不同四點,這四點在上的排列順次為,求的值

查看答案和解析>>

同步練習冊答案