【題目】設(shè)定點(diǎn),常數(shù),動(dòng)點(diǎn),設(shè),,且

1)求動(dòng)點(diǎn)的軌跡方程;

2)設(shè)直線與點(diǎn)的軌跡交于兩點(diǎn),問(wèn)是否存在實(shí)數(shù)使得?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

【答案】12)不存在.見(jiàn)解析

【解析】

1)根據(jù)向量的表達(dá)式,可推斷出點(diǎn)到兩個(gè)定點(diǎn),的距離之差為4,根據(jù)雙曲線的定義判斷出其軌跡為雙曲線,進(jìn)而根據(jù),求得,即可求得動(dòng)點(diǎn)的軌跡方程.

2)設(shè)將直線的方程代入橢圓的方程,消去得到關(guān)于的一元二次方程,再結(jié)合根與系數(shù)的關(guān)系利用向量數(shù)量積的坐標(biāo)公式即可求得值,從判斷的值是否存在.

1)由題意,

∴動(dòng)點(diǎn)的軌跡是以,為焦點(diǎn)的雙曲線的右支,方程為

2)由直線:與點(diǎn)的軌跡方程,聯(lián)立可得

設(shè),,則,

,

,

檢驗(yàn)時(shí),所以不存在

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)拋物線的焦點(diǎn)為,直線交于,兩點(diǎn),的面積為.

(1)求的方程;

(2)若,上的兩個(gè)動(dòng)點(diǎn),,試問(wèn):是否存在定點(diǎn),使得?若存在,求的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三條直線),,,若的距離是.

1)求a的值:

2)能否找到一點(diǎn)P,使得點(diǎn)P同時(shí)滿足下列三個(gè)條件:①P是第一象限的點(diǎn);②點(diǎn)P的距離是點(diǎn)P的距離的;③點(diǎn)P的距離與點(diǎn)P的距離之比是,若能,求出點(diǎn)P的坐標(biāo),若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】公歷日為我國(guó)傳統(tǒng)清明節(jié),清明節(jié)掃墓我們都要獻(xiàn)鮮花,某種鮮花的價(jià)格會(huì)隨著需求量的增加而上升.一個(gè)批發(fā)市場(chǎng)向某地商店供應(yīng)這種鮮花,具體價(jià)格統(tǒng)計(jì)如下表所示

日供應(yīng)量(束)

單位(元)

(I)根據(jù)上表中的數(shù)據(jù)進(jìn)行判斷,函數(shù)模型哪一個(gè)更適合于體現(xiàn)日供應(yīng)量與單價(jià)之間的關(guān)系;(給出判斷即可,不必說(shuō)明理由)

(II)根據(jù)(I)的判斷結(jié)果以及參考數(shù)據(jù),建立關(guān)于的回歸方程;

(III)該地區(qū)有個(gè)商店,其中個(gè)商店每日對(duì)這種鮮花的需求量在束以下,個(gè)商店每日對(duì)這種鮮花的需求量在束以上,則從這個(gè)商店個(gè)中任取個(gè)進(jìn)行調(diào)查,求恰有個(gè)商店對(duì)這種鮮花的需求量在束以上的概率.

參考公式及相關(guān)數(shù)據(jù):對(duì)于一組數(shù)據(jù),,...,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐PABC中,PA3,PBPC,ABAC2,BC

1)求二面角BAPC大小的余弦值;

2)求點(diǎn)P到底面ABC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,為矩形,是以為直角的等腰直角三角形,平面平面

(Ⅰ)證明:平面平面;

(Ⅱ)為直線的中點(diǎn),且,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線恒過(guò)定點(diǎn),過(guò)點(diǎn)引圓的兩條切線,設(shè)切點(diǎn)分別為,.

1)求直線的一般式方程;

2)求四邊形的外接圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某闖關(guān)游戲共有兩關(guān),游戲規(guī)則:先闖第一關(guān),當(dāng)?shù)谝魂P(guān)闖過(guò)后,才能進(jìn)入第二關(guān),兩關(guān)都闖過(guò),則闖關(guān)成功,且每關(guān)各有兩次闖關(guān)機(jī)會(huì).已知闖關(guān)者甲第一關(guān)每次闖過(guò)的概率均為,第二關(guān)每次闖過(guò)的概率均為.假設(shè)他不放棄每次闖關(guān)機(jī)會(huì),且每次闖關(guān)互不影響.

(1)求甲恰好闖關(guān)3次才闖關(guān)成功的概率;

(2)記甲闖關(guān)的次數(shù)為,求隨機(jī)變量的分布列和期望.。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐PABCD中,PA⊥平面ABCD,∠ABC=∠BAD90°,ADAP4,ABBC2,NAD的中點(diǎn).

1)求異面直線PBCD所成角的余弦值;

2)點(diǎn)M在線段PC上且滿足,直線MN與平面PBC所成角的正弦值為,求實(shí)數(shù)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案