已知定義域?yàn)镽的函數(shù)f(x)滿足f(-x)=-f(x+2),當(dāng)x>1時(shí),f(x)單調(diào)遞減,如果1+x1x2<x1+x2<2,則f(x1)+f(x2)的值( 。
分析:由已知不妨可設(shè)x1<1,x2>1,則2-x1>x2>1利用x>1時(shí),f(x)單調(diào)遞減,且函數(shù)y=f(x)滿足f(2+x)=-f(-x),可求
解答:解:由1+x1x2<x1+x2<2,
可得,x1+x2<2,x1x2<1,且(x1-1)(x2-1)<0,
則x1、x2中必有1個(gè)小于0,另一個(gè)大于0,
不妨設(shè)x1<1,x2>1,則2-x1>x2>1
∵當(dāng)x>1時(shí),f(x)單調(diào)遞減,
∴f(2-x1)<f(x2
∵函數(shù)y=f(x)滿足f(2+x)=-f(-x),即f(2-x)=-f(x)
∴f(x1)-f(x2
∴f(x1)+f(x2)的值恒大于0,
故選B
點(diǎn)評(píng):本題考查函數(shù)的單調(diào)性,考查恒成立問(wèn)題,正確運(yùn)用函數(shù)的單調(diào)性是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•石家莊二模)已知定義域?yàn)镽的函數(shù)f(x)在(1,+∞)上為減函數(shù),且函數(shù)y=f(x+1)為偶函數(shù),則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)滿足f(x)f(x+2)=5,若f(2)=3,則f(2012)=
5
3
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)在(4,+∞)上為減函數(shù),且函數(shù)y=f(x)的對(duì)稱軸為x=4,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)=
-2x+a2x+1
是奇函數(shù)
(1)求a值;
(2)判斷并證明該函數(shù)在定義域R上的單調(diào)性;
(3)若對(duì)任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求實(shí)數(shù)k的取值范圍;
(4)設(shè)關(guān)于x的函數(shù)F(x)=f(4x-b)+f(-2x+1)有零點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)滿足f(4-x)=-f(x),當(dāng)x<2時(shí),f(x)單調(diào)遞減,如果x1+x2>4且(x1-2)(x2-2)<0,則f(x1)+f(x2)的值( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案