如圖,橢圓的離心率為,直線所圍成的矩形ABCD的面積為8.

(Ⅰ)求橢圓M的標準方程;

(Ⅱ) 設直線與橢圓M有兩個不同的交點與矩形ABCD有兩個不同的交點.求的最大值及取得最大值時m的值.

 

【答案】

(I)     (II) 和0時,取得最大值

【解析】(I)……①

矩形ABCD面積為8,即……②

由①②解得:,∴橢圓M的標準方程是.

(II),

,則

.

.

點時,,當點時,.

①當時,有,[來源:]

,

其中,由此知當,即時,取得最大值.

②由對稱性,可知若,則當時,取得最大值.

③當時,,,

由此知,當時,取得最大值.

綜上可知,當和0時,取得最大值

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2013-2014學年山東省高三下學期開學考試理科數(shù)學試卷(解析版) 題型:解答題

如圖,橢圓的離心率為,軸被曲線截得的線段長等于的短軸長。軸的交點為,過坐標原點的直線相交于點,直線分別與相交于點。

1)求、的方程;

2)求證:。

3)記的面積分別為,若,求的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年浙江省桐鄉(xiāng)市高三模擬考試(2月)理科數(shù)學試卷(解析版) 題型:解答題

如圖,橢圓的離心率為,是其左右頂點,是橢圓上位于軸兩側的點(點軸上方),且四邊形面積的最大值為4.

(1)求橢圓方程;

(2)設直線的斜率分別為,若,設△與△的面積分別為,求的最大值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年山東省萊蕪市高三4月模擬考試理科數(shù)學試卷(解析版) 題型:解答題

如圖,橢圓的離心率為,軸被曲線截得的線段長等于的短軸長。軸的交點為,過坐標原點的直線相交于點,直線分別與相交于點

(1)求、的方程;

(2)求證:。

(3)記的面積分別為,若,求的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆重慶市高二上學期期中考試文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分12分)如圖,橢圓的離心率為,直線所圍成的矩形ABCD的面積為8.

 

(Ⅰ)求橢圓M的標準方程;

(Ⅱ) 設直線與橢圓M有兩個不同的交點與矩形ABCD有兩個不同的交點.求的最大值及取得最大值時m的值.

 

查看答案和解析>>

同步練習冊答案