已知.求證:.
證明過程見試題解析.
解析試題分析:本題屬于三角恒等式的證明,三角恒等式的證明方法靈活多樣,可總結(jié)如下:(1)從一邊開始直接推證等于另一邊,一般地,如果所證等式一邊比較復(fù)雜而另一邊比較簡單時(shí)多采用此法,即由繁到簡;(2)左右歸一法,即將所證恒等式左,右兩邊同時(shí)推導(dǎo)變形,直接推得左右兩邊都等于同一個(gè)式子;(2)比較法,即設(shè)法證明“左邊-右邊=0”,或“左邊/右邊=1”;(4)分析法,從被證的等式出發(fā),逐步地探求使等式成立的充分條件,一直到已知條件或顯然成立的結(jié)論為止,就可以判斷原等式成立.本題適用于第四類,觀察發(fā)現(xiàn)條件中所給角為,結(jié)論中所給角為,可將所證等式利用倍角公式展開,可化為又由條件將正切化為正余弦可得.等式成立.
解:因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/8c/b/1lfak3.png" style="vertical-align:middle;" />,所以1+,
從而,,
另一方面:要證,
只要證:,
即證 ,
即證 ,
由可得成立,
于是命題得證.
考點(diǎn):三角恒等變形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量 =(cos,sin),=(cos,sin),||=.
(Ⅰ)求cos(-)的值;
(Ⅱ)若<<,-<<,且sin=-,求sin的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=cos(+x)·cos(-x),g(x)=sin2x-.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)h(x)=f(x)-g(x)的最大值,并求使h(x)取得最大值的x的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,半圓O的直徑為2,A為直徑延長線上的一點(diǎn),OA=2,B為半圓上任意一點(diǎn),以AB為一邊作等邊三角形ABC.問:點(diǎn)B在什么位置時(shí),四邊形OACB面積最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com