已知向量函數(shù)的第個(gè)零點(diǎn)記作(從小到大依次計(jì)數(shù)),所有組成數(shù)列.
(1)求函數(shù)的值域;
(2)若,求數(shù)列的前100項(xiàng)和.
(1);(2)
解析試題分析:(1)根據(jù)題意向量函數(shù).通過(guò)向量的坐標(biāo)形式的數(shù)量積公式,以及三角函數(shù)的化一公式,可得函數(shù)的關(guān)于x的解析式.
(2)由及(1)可得.因?yàn)榈?img src="http://thumb.zyjl.cn/pic5/tikupic/ad/e/ozwta1.png" style="vertical-align:middle;" />個(gè)零點(diǎn)記作.也就是的對(duì)應(yīng)的x的值從小排到大的一列數(shù).根據(jù)圖像的對(duì)稱(chēng)性可得兩個(gè)相鄰的和為.所以即可求得結(jié)論.
試題解析:(1)
所以函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/90/1/cm5bu.png" style="vertical-align:middle;" />
(2)
由得所以或
因此
考點(diǎn):1.三角形函數(shù)的化一公式.2.向量的數(shù)量積.3.數(shù)列的求和.4.對(duì)稱(chēng)的知識(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知為坐標(biāo)原點(diǎn),=(),=(1,), .
(1)若的定義域?yàn)閇-,],求y=的單調(diào)遞增區(qū)間;
(2)若的定義域?yàn)閇,],值域?yàn)閇2,5],求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知向量a=,b=(sinx,cos2x),x∈R,設(shè)函數(shù)f(x)=a·b.
(1)求f(x)的最小正周期.
(2)求f(x)在上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
是兩個(gè)不共線的非零向量,且.
(1)記當(dāng)實(shí)數(shù)t為何值時(shí),為鈍角?
(2)令,求的值域及單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:+=1(a>b>0)的離心率e=,橢圓C的上、下頂點(diǎn)分別為A1,A2,左、右頂點(diǎn)分別為B1,B2,左、右焦點(diǎn)分別為F1,F(xiàn)2.原點(diǎn)到直線A2B2的距離為.
(1)求橢圓C的方程;
(2)過(guò)原點(diǎn)且斜率為的直線l,與橢圓交于E,F(xiàn)點(diǎn),試判斷∠EF2F是銳角、直角還是鈍角,并寫(xiě)出理由;
(3)P是橢圓上異于A1,A2的任一點(diǎn),直線PA1,PA2,分別交軸于點(diǎn)N,M,若直線OT與過(guò)點(diǎn)M,N 的圓G相切,切點(diǎn)為T(mén).證明:線段OT的長(zhǎng)為定值,并求出該定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知=(cosα,sinα),=(cosβ,sinβ),與之間有關(guān)系|k+|=|-k|,其中k>0,(Ⅰ)用k表示;
(Ⅱ)求·的最小值,并求此時(shí)與的夾角的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分14分)已知兩個(gè)不共線的向量,它們的夾角為,且,,為正實(shí)數(shù).
(1)若與垂直,求;
(2)若,求的最小值及對(duì)應(yīng)的的值,并判斷此時(shí)向量與是否垂直?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com