對(duì)于每個(gè)正整數(shù)n,拋物線y=(n2+n)x2-(2n+1)x+1與x軸交于An,Bn兩點(diǎn),以|AnBn|表示An,Bn兩點(diǎn)間的距離,則|A1B1|+|A2B2|+…+|A2013B2013|的值是( 。
分析:由于y=(n2+n)x2-(2n+1)x+1=(nx-1)[(n+1)x-1],于是|AnBn|=
1
n
-
1
n+1
,利用累加法即可求和即可.
解答:解:∵y=(n2+n)x2-(2n+1)x+1=(nx-1)[(n+1)x-1],
∴由y=0得:x=
1
n
或x=
1
n+1
,
∴An
1
n+1
,0),Bn
1
n
,0),
∴|AnBn|=
1
n
-
1
n+1
,
∴|A1B1|+|A2B2|+…+|A2013B2013|=(1-
1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
2013
-
1
2014

=1-
1
2014
=
2013
2014

故選C.
點(diǎn)評(píng):本題考查數(shù)列與函數(shù)的綜合,難點(diǎn)在于明確|AnBn|=
1
n
-
1
n+1
,考查學(xué)生分析問題與轉(zhuǎn)化求解的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于每個(gè)正整數(shù)n,拋物線y=(n2+n)x2-(2n+1)x+1與x軸交于兩點(diǎn)An、Bn,則|A1B1|+|A2B2|+…+|A2010B2010|的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對(duì)于每個(gè)正整數(shù)n,拋物線y=(n2+n)x2-(2n+1)x+1與x軸交于兩點(diǎn)An、Bn,則|A1B1|+|A2B2|+…+|A2010B2010|的值為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省贛州市南康中學(xué)高二(上)12月月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

對(duì)于每個(gè)正整數(shù)n,拋物線y=(n2+n)x2-(2n+1)x+1與x軸交于An,Bn兩點(diǎn),以|AnBn|表示An,Bn兩點(diǎn)間的距離,則|A1B1|+|A2B2|+…+|A2013B2013|的值是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣東省高考數(shù)學(xué)一輪復(fù)習(xí):6.7 數(shù)列的求和(解析版) 題型:解答題

對(duì)于每個(gè)正整數(shù)n,拋物線y=(n2+n)x2-(2n+1)x+1與x軸交于兩點(diǎn)An、Bn,則|A1B1|+|A2B2|+…+|A2010B2010|的值為   

查看答案和解析>>

同步練習(xí)冊(cè)答案