【題目】已知坐標(biāo)平面上點(diǎn)與兩個(gè)定點(diǎn), 的距離之比等于5.

(1)求點(diǎn)的軌跡方程,并說(shuō)明軌跡是什么圖形;

2)記(1)中的軌跡為,過(guò)點(diǎn)的直線所截得的線段的長(zhǎng)為 8,求直線的方程.

【答案】12,或

【解析】 試題分析】(1)運(yùn)用兩點(diǎn)間距離公式建立方程進(jìn)行化簡(jiǎn);(2)借助直線與圓的位置關(guān)系,運(yùn)用圓心距、半徑、弦長(zhǎng)之間的關(guān)系建立方程待定直線的斜率,再用直線的點(diǎn)斜式方程分析求解:

(1)由題意,得

化簡(jiǎn),得

點(diǎn)的軌跡方程是

軌跡是以為圓心,以為半徑的圓

(2)當(dāng)直線的斜率不存在時(shí), ,

此時(shí)所截得的線段的長(zhǎng)為

符合題意.

當(dāng)直線的斜率存在時(shí),設(shè)的方程為

,即,

圓心到的距離,

由題意,得,

解得

∴直線的方程為

.

綜上,直線的方程為

,或.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等式:sin25°+cos235°+sin 5°cos 35°= ,

sin215°+cos245°+sin 15°cos 45°=,sin230°+cos260°+sin 30°·cos 60°=,…,由此歸納出對(duì)任意角度θ都成立的一個(gè)等式,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,海上有、兩個(gè)相距保持觀望所成的視角為,現(xiàn)從船派下一只小艇沿方向駛至進(jìn)行作業(yè),且設(shè)

(1)分別表示,并求出的取值范圍;

(2)0晚上小艇在發(fā)出一道強(qiáng)烈的光線照射,至光線距離為最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解大學(xué)生觀看浙江衛(wèi)視綜藝節(jié)目“奔跑吧兄弟”是否與性別有關(guān),一所大學(xué)心理學(xué)教師從該校學(xué)生中隨機(jī)抽取了50人進(jìn)行問(wèn)卷調(diào)查,得到了如下的列聯(lián)表:

喜歡看“奔跑吧兄弟”

不喜歡看“奔跑吧兄弟”

合計(jì)

女生

5

男生

10

合計(jì)

50

若該教師采用分層抽樣的方法從50份問(wèn)卷調(diào)查中繼續(xù)抽查了10份進(jìn)行重點(diǎn)分析,知道其中喜歡看“奔跑吧兄弟”的有6人.

(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整;

(2)是否有的把握認(rèn)為喜歡看“奔跑吧兄弟”節(jié)目與性別有關(guān)?說(shuō)明你的理由;

(3)已知喜歡看“奔跑吧兄弟”的10位男生中,還喜歡看新聞,還喜歡看動(dòng)畫(huà)片,還喜歡看韓劇,現(xiàn)再?gòu)南矚g看新聞、動(dòng)畫(huà)片和韓劇的男生中各選出1名進(jìn)行其他方面的調(diào)查,求不全被選中的概率.

下面的臨界值表供參考:

P(χ2k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,焦點(diǎn)到短軸端點(diǎn)的距離為2,離心率為.

(Ⅰ)求該橢圓的方程;

(Ⅱ)若直線與橢圓交于, 兩點(diǎn)且,是否存在以原點(diǎn)為圓心的定圓與直線相切?若存在求出定圓的方程;若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)證明:

(2)若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=的定義域?yàn)椋?/span>-1,1),滿足f(-x)=-fx),且

(1)求函數(shù)fx)的解析式;

(2)證明fx)在(-1,1)上是增函數(shù);

(3)解不等式 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合,

1)當(dāng)m=4時(shí),求,

2)若,求實(shí)數(shù)m的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修:不等式選講

已知函數(shù)f(x)=|2x+3|+|2x﹣1|.

(Ⅰ)求不等式f(x)<8的解集;

(Ⅱ)若關(guān)于x的不等式f(x)≤|3m+1|有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案