【題目】已知曲線C上任意一點(diǎn)到的距離與到點(diǎn) 的距離之比均為.
(1)求曲線C的方程;
(2)設(shè)點(diǎn),過點(diǎn)作兩條相異直線分別與曲線C相交于兩點(diǎn),且直線和直線的傾斜角互補(bǔ),求線段的最大值.
【答案】(1) ; (2).
【解析】
(1)設(shè)曲線C上的任意一點(diǎn)為Q(x,y),利用已知條件列出方程,即可求解曲線C的方程.
(2)由題意知,直線PE和直線PF的斜率存在,且互為相反數(shù),設(shè)直線PE的方程為y+3=k
(x﹣1),由消去y得(1+k2)x2﹣2k(k+3)x+k2+6k﹣1=0,求出EF的
坐標(biāo),得到直線的斜率,然后求解直線方程,轉(zhuǎn)化求解EF 的距離的最小值即可.
(1)設(shè)曲線C上的任意一點(diǎn)為Q(x,y),
由題意得,整理得x2+y2=10.
即曲線C的方程為x2+y2=10.
(2)由題意知,直線PE和直線PF的斜率存在,
且互為相反數(shù),因?yàn)?/span>P(1,﹣3),故可設(shè)直線PE的方程為y+3=k(x﹣1),
由消去y得(1+k2)x2﹣2k(k+3)x+k2+6k﹣1=0,
因?yàn)?/span>P(1,﹣3)在圓上,所以點(diǎn)P的橫坐標(biāo)x=1一定是該方程的解,
故可得,同理,,
所以==,
故直線EF的斜率為定值,設(shè)直線EF的方程為,
則圓C的圓心到直線EF的距離,
所以,
所以當(dāng)b=0時(shí),.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)如圖,在多面體中,底面是邊長(zhǎng)為的的菱形, ,四邊形是矩形,平面平面, , 和分別是和的中點(diǎn).
(Ⅰ)求證:平面平面;
(Ⅱ)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,a2=4,且對(duì)任意m,n,p,q∈N* , 若m+n=p+q,則有am+an=ap+aq . (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{ }的前n項(xiàng)和為Sn , 求證: ≤Sn< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前n項(xiàng)和Sn=n2+n .
(1)求數(shù)列的通項(xiàng)公式an;
(2)令 ,求數(shù)列{bn}的前n項(xiàng)和為Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是函數(shù)在區(qū)間上的圖象,為了得到這個(gè)函數(shù)的圖象,只需將y=sinx的圖象
A. 向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>,縱坐標(biāo)不變
B. 向左平移至個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變
C. 向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>,縱坐標(biāo)不變
D. 向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)袋中裝有四個(gè)形狀大小完全相同的編號(hào)為1,2,3,4的球,從袋中隨機(jī)抽取一個(gè)球,將其編號(hào)記為m,然后從袋中余下的三個(gè)球中再隨機(jī)抽取一個(gè)球,將其編號(hào)記為n,則關(guān)于x的一元二次方程無實(shí)根的概率為__________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:x>1, x>0,命題q:x∈R,x3>3x , 則下列命題為真命題的是( )
A.p∧q
B.p∨(¬q)
C.p∧(¬q)
D.(¬p)∧q
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公交公司分別推出支付寶和微信掃碼支付乘車活動(dòng),活動(dòng)設(shè)置了一段時(shí)間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊(duì)統(tǒng)計(jì)了活動(dòng)剛推出一周內(nèi)每一天使用掃碼支付的人次,用x表示活動(dòng)推出的天數(shù),y表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計(jì)數(shù)據(jù)如表所示:
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
y | 6 | 11 | 21 | 34 | 66 | 101 | 196 |
根據(jù)以上數(shù)據(jù),繪制了散點(diǎn)圖.
(1)根據(jù)散點(diǎn)圖判斷,在推廣期內(nèi),與(,均為大于零的常數(shù))哪一個(gè)適宜作為掃碼支付的人次關(guān)于活動(dòng)推出天數(shù)的回歸方程類型?(給出判斷即可,不必說明理由);
(2)若y關(guān)于x的回歸方程不是線性的可通過換元方法把它化歸為線性回歸方程。例如:(a、b為常數(shù),e為自然對(duì)數(shù)的底數(shù)),可以兩邊同時(shí)取自然對(duì)數(shù),再令,先用最小二乘法求出與x的線性回歸方程,再得出y與x的回歸方程。根據(jù)(1)的判斷結(jié)果及表1中的數(shù)據(jù),求y關(guān)于x的回歸方程;
(3)由(2)中的歸方程預(yù)測(cè)活動(dòng)推出第12天使用掃碼支付的人次。
參考數(shù)據(jù):
66 | 1.54 | 2711 | 50.12 | 3.47 |
其中,參考公式:對(duì)于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為: ,。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com