【題目】函數(shù)且
(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;
(2)定義在R上的函數(shù)滿足,當(dāng)時(shí),。若存在滿足不等式且是函數(shù)的一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍。
【答案】(1)(2)
【解析】
(1)將代入,求其導(dǎo)函數(shù),得的值,進(jìn)而可得切線方程。
(2)構(gòu)造函數(shù),根據(jù)已知得到其是奇函數(shù),求導(dǎo)可得在上的單調(diào)性,將轉(zhuǎn)化為關(guān)于的不等式,利用的單調(diào)性解該不等式,可求得的范圍,即的零點(diǎn)的范圍,轉(zhuǎn)化為在的范圍上有零點(diǎn),利用導(dǎo)數(shù)知識(shí)和零點(diǎn)存在性定理,可求出a的取值范圍。
解:(1)當(dāng)時(shí),因?yàn)?/span>
所以,
所以,
又,所以函數(shù)在點(diǎn)處的切線方程為,
即
(2)令,因?yàn)?/span>,
所以,
所以為奇函數(shù)。
當(dāng)時(shí),,
所以在上單調(diào)遞減,
所以在R上單調(diào)遞減,
又滿足不等式,即,
所以,
化簡(jiǎn)得,所以,即
令
因?yàn)?/span>是函數(shù)的一個(gè)零點(diǎn),
所以在時(shí)有一個(gè)零點(diǎn):
當(dāng)時(shí),,
所以在上單調(diào)遞減,
又,又因?yàn)?/span>,
所以要使在時(shí)有一個(gè)零點(diǎn),只需,解得,
所以實(shí)數(shù)a的取值范圍為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)實(shí)施“光盤行動(dòng)”以后,某自助啤酒吧也制定了自己的行動(dòng)計(jì)劃,進(jìn)店的每一位客人需預(yù)交元,啤酒根據(jù)需要自己用量杯量取,結(jié)賬時(shí),根據(jù)每桌剩余酒量,按一定倍率收費(fèi)(如下表),每桌剩余酒量不足升的,按升計(jì)算(如剩余升,記為剩余升).例如:結(jié)賬時(shí),某桌剩余酒量恰好為升,則該桌的每位客人還應(yīng)付元.統(tǒng)計(jì)表明飲酒量與人數(shù)有很強(qiáng)的線性相關(guān)關(guān)系,下面是隨機(jī)采集的組數(shù)據(jù)(其中表示飲酒人數(shù),(升)表示飲酒量):,,,,.
剩余酒量(單位:升) | 升以上(含升) | ||||
結(jié)賬時(shí)的倍率 |
(1)求由這組數(shù)據(jù)得到的關(guān)于的回歸直線方程;
(2)小王約了位朋友坐在一桌飲酒,小王及朋友用量杯共量取了升啤酒,這時(shí),酒吧服務(wù)生對(duì)小王說(shuō),根據(jù)他的經(jīng)驗(yàn),小王和朋友量取的啤酒可能喝不完,可以考慮再邀請(qǐng)位或位朋友一起來(lái)飲酒,會(huì)更劃算.試向小王是否該接受服務(wù)生的建議?
參考數(shù)據(jù):回歸直線的方程是,其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)若函數(shù)在上是單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅱ)若,對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)(噸)、一位居民的月用水量不超過(guò)的部分按平價(jià)收費(fèi),超出的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過(guò)抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)設(shè)該市有30萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說(shuō)明理由;
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過(guò)標(biāo)準(zhǔn)(噸),估計(jì)的值,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某冰糖橙,甜橙的一種,云南著名特產(chǎn),以味甜皮薄著稱。該橙按照等級(jí)可分為四類:珍品、特級(jí)、優(yōu)級(jí)和一級(jí)(每箱有5kg),某采購(gòu)商打算訂購(gòu)一批橙子銷往省外,并從采購(gòu)的這批橙子中隨機(jī)抽取100箱,利用橙子的等級(jí)分類標(biāo)準(zhǔn)得到的數(shù)據(jù)如下表:
等級(jí) | 珍品 | 特級(jí) | 優(yōu)級(jí) | 一級(jí) |
箱數(shù) | 40 | 30 | 10 | 20 |
(1)若將頻率改為概率,從這100箱橙子中有放回地隨機(jī)抽取4箱,求恰好抽到2箱是一級(jí)品的概率:
(2)利用樣本估計(jì)總體,莊園老板提出兩種購(gòu)銷方案供采購(gòu)商參考:
方案一:不分等級(jí)賣出,價(jià)格為27元/kg;
方案二:分等級(jí)賣出,分等級(jí)的橙子價(jià)格如下:
等級(jí) | 珍品 | 特級(jí) | 優(yōu)級(jí) | 一級(jí) |
售價(jià)(元/kg) | 36 | 30 | 24 | 18 |
從采購(gòu)商的角度考慮,應(yīng)該采用哪種方案?
(3)用分層抽樣的方法從這100箱橙子中抽取10箱,再?gòu)某槿〉?/span>10箱中隨機(jī)抽取3箱,X表示抽取的是珍品等級(jí),求x的分布列及數(shù)學(xué)期望E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面為矩形, 面, 為的中點(diǎn)。
(1)證明: 平面;
(2)設(shè), ,三棱錐的體積 ,求A到平面PBC的距離。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,,,,且,.
(1)證明:面;
(2)在上是否存在點(diǎn),使平面,若存在,請(qǐng)計(jì)算的值,若不存在,請(qǐng)說(shuō)明理由;
(3)若,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是菱形,,且平面,,M,N分別為,的中點(diǎn).
(1)記平面與底面的交線為l,試判斷直線l與平面的位置關(guān)系,并證明.
(2)點(diǎn)Q在棱上,若Q到平面的距離為,求線段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高鐵站停車場(chǎng)針對(duì)小型機(jī)動(dòng)車收費(fèi)標(biāo)準(zhǔn)如下:2小時(shí)內(nèi)(含2小時(shí))每輛每次收費(fèi)5元;超過(guò)2小時(shí)不超過(guò)5小時(shí),每增加一小時(shí)收費(fèi)增加3元,不足一小時(shí)的按一小時(shí)計(jì)費(fèi);超過(guò)5小時(shí)至24小時(shí)內(nèi)(含24小時(shí))收費(fèi)15元封頂。超過(guò)24小時(shí),按前述標(biāo)準(zhǔn)重新計(jì)費(fèi).為了調(diào)查該停車場(chǎng)一天的收費(fèi)情況,現(xiàn)統(tǒng)計(jì)1000輛車的停留時(shí)間(假設(shè)每輛車一天內(nèi)在該停車場(chǎng)僅停車一次),得到下面的頻數(shù)分布表:
T(小時(shí)) | |||||
頻數(shù)(車次) | 600 | 120 | 80 | 100 | 100 |
以車輛在停車場(chǎng)停留時(shí)間位于各區(qū)間的頻率代替車輛在停車場(chǎng)停留時(shí)間位于各區(qū)間的概率。
(1)X表示某輛車在該停車場(chǎng)停車一次所交費(fèi)用,求X的概率分布列及期望;
(2)現(xiàn)隨機(jī)抽取該停車場(chǎng)內(nèi)停放的3輛車,表示3輛車中停車費(fèi)用少于的車輛數(shù),求的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com