【題目】已知拋物線的焦點(diǎn)到準(zhǔn)線的距離為2,直線與拋物線交于不同的兩點(diǎn),.
(1)求拋物線的方程;
(2)是否存在與的取值無(wú)關(guān)的定點(diǎn),使得直線,的斜率之和恒為定值?若存在,求出所有點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2)存在,.
【解析】
(1)本題可根據(jù)題意得出焦點(diǎn)坐標(biāo)以及準(zhǔn)線方程,然后根據(jù)焦點(diǎn)到準(zhǔn)線的距離為2即可求出,最后根據(jù)即可求出拋物線方程;
(2)本題首先可設(shè)出、、,然后聯(lián)立方程并通過(guò)韋達(dá)定理得出,再然后對(duì)進(jìn)行化簡(jiǎn)并根據(jù)為與無(wú)關(guān)的常數(shù)得出,最后通過(guò)計(jì)算即可得出結(jié)果.
(1)由題意得,準(zhǔn)線方程:,所以,拋物線方程為.
(2)假設(shè)存在定點(diǎn)滿足題意,設(shè),,,
聯(lián)立方程,消去得,由韋達(dá)定理得,
因?yàn)橹本、的斜率為、,
所以
.
要使為與無(wú)關(guān)的常數(shù),只能,解得,,
此時(shí)為常數(shù),
綜上所述,存在定點(diǎn),使得直線、的斜率之和恒為定值0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某學(xué)校研究性課題《什么樣的活動(dòng)最能促進(jìn)同學(xué)們進(jìn)行垃圾分類》向題的統(tǒng)計(jì)圖(每個(gè)受訪者都只能在問(wèn)卷的5個(gè)活動(dòng)中選擇一個(gè)),以下結(jié)論錯(cuò)誤的是( 。
A. 回答該問(wèn)卷的總?cè)藬?shù)不可能是100個(gè)
B. 回答該問(wèn)卷的受訪者中,選擇“設(shè)置分類明確的垃圾桶”的人數(shù)最多
C. 回答該問(wèn)卷的受訪者中,選擇“學(xué)校團(tuán)委會(huì)宣傳”的人數(shù)最少
D. 回答該問(wèn)卷的受訪者中,選擇“公益廣告”的人數(shù)比選擇“學(xué)校要求”的少8個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)討論函數(shù)的單調(diào)性;
(2)設(shè),當(dāng)時(shí),判斷是否存在使得,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè)函數(shù)有兩個(gè)極值點(diǎn)(),若恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:和圓:,,為橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上,當(dāng)直線與圓相切時(shí),.
(Ⅰ)求的方程;
(Ⅱ)直線:與軸交于點(diǎn),且與橢圓和圓都相切,切點(diǎn)分別為,,記和的積分別為和,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)接到生產(chǎn)3000臺(tái)某產(chǎn)品的三種部件的訂單,每臺(tái)產(chǎn)品需要這三種部件的數(shù)量分別為2,2,1(單位:件),已知每個(gè)工人每天可生產(chǎn)A部件6件,或B部件3件,或C部件2件.該企業(yè)計(jì)劃安排200名工人分成三組分別生產(chǎn)這三種部件,生產(chǎn)B部件的人數(shù)與生產(chǎn)A部件的人數(shù)成正比,比例系數(shù)為k(k為正整數(shù)).
(1)設(shè)生產(chǎn)部件的人數(shù)為,分別寫(xiě)出完成三種部件生產(chǎn)需要的時(shí)間;
(2)假設(shè)這三種部件的生產(chǎn)同時(shí)開(kāi)工,試確定正整數(shù)k的值,使完成訂單任務(wù)的時(shí)間最短,并給出時(shí)間最短時(shí)具體的人數(shù)分組方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率,橢圓上的點(diǎn)到其左焦點(diǎn)的最大距離為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)橢圓左焦點(diǎn)的直線與橢圓交于兩點(diǎn),直線,過(guò)點(diǎn)作直線的垂線與直線交于點(diǎn),求的最小值和此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為,準(zhǔn)線為,過(guò)的直線與相交于兩點(diǎn).
(1)以為直徑的圓與軸交兩點(diǎn),若,求;
(2)點(diǎn)在上,過(guò)點(diǎn)且垂直于軸的直線與分別相交于兩點(diǎn),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為了對(duì)某種商品進(jìn)行合理定價(jià),需了解該商品的月銷售量(單位:萬(wàn)件)與月銷售單價(jià)(單位:元/件)之間的關(guān)系,對(duì)近個(gè)月的月銷售量和月銷售單價(jià)數(shù)據(jù)進(jìn)行了統(tǒng)計(jì)分析,得到一組檢測(cè)數(shù)據(jù)如表所示:
月銷售單價(jià)(元/件) | ||||||
月銷售量(萬(wàn)件) |
(1)若用線性回歸模型擬合與之間的關(guān)系,現(xiàn)有甲、乙、丙三位實(shí)習(xí)員工求得回歸直線方程分別為:,和,其中有且僅有一位實(shí)習(xí)員工的計(jì)算結(jié)果是正確的.請(qǐng)結(jié)合統(tǒng)計(jì)學(xué)的相關(guān)知識(shí),判斷哪位實(shí)習(xí)員工的計(jì)算結(jié)果是正確的,并說(shuō)明理由;
(2)若用模型擬合與之間的關(guān)系,可得回歸方程為,經(jīng)計(jì)算該模型和(1)中正確的線性回歸模型的相關(guān)指數(shù)分別為和,請(qǐng)用說(shuō)明哪個(gè)回歸模型的擬合效果更好;
(3)已知該商品的月銷售額為(單位:萬(wàn)元),利用(2)中的結(jié)果回答問(wèn)題:當(dāng)月銷售單價(jià)為何值時(shí),商品的月銷售額預(yù)報(bào)值最大?(精確到)
參考數(shù)據(jù):.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com