【題目】在四棱錐P—ABCD中,側(cè)面PCD⊥底面ABCD,PD⊥CD,EPC中點(diǎn),底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2

)求證:BE∥平面PAD;

)求證:BC⊥平面PBD

)設(shè)Q為側(cè)棱PC上一點(diǎn),試確定的值,使得二面角Q—BD—P45°

【答案】)略

)略

【解析】

解:(1)取PD的中點(diǎn)F,連接EF,AF,

因?yàn)?/span>EPC中點(diǎn),所以EF//CD,且,

在梯形ABCD中,AB//CDAB=1,

所以EF//AB,EF=AB,四邊形ABEF為平行四邊形,

所以BE//AF,

BE平面PAD,AF平面PAD,

所以BE//平面PAD

2)平面PCD⊥底面ABCDPD⊥CD,

所以PD⊥平面ABCD,

所以PD⊥AD

如圖,以D為原點(diǎn)建立空間直角坐標(biāo)系Dxyz

A1,00),B1,1,0),C0,2,0),P0,0,1

所以

又由PD⊥平面ABCD,可得PD⊥BC,

所以BC⊥平面PBD

3)平面PBD的法向量為=-1,1,0

所以Q

設(shè)平面QBD的法向量為

所以,

所以

注意到

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 設(shè)橢圓的左焦點(diǎn)為,左頂點(diǎn)為,頂點(diǎn)為B.已知為原點(diǎn)).

(Ⅰ)求橢圓的離心率;

(Ⅱ)設(shè)經(jīng)過(guò)點(diǎn)且斜率為的直線與橢圓在軸上方的交點(diǎn)為,圓同時(shí)與軸和直線相切,圓心在直線上,且,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是半徑為2的圓周上的定點(diǎn),P為圓周上的動(dòng)點(diǎn),是銳角,大小為β.圖中陰影區(qū)域的面積的最大值為

A. 4β+4cosβB. 4β+4sinβC. 2β+2cosβD. 2β+2sinβ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知底角為45°的等腰梯形ABCD,底邊BC長(zhǎng)為7 cm,腰長(zhǎng)為2cm,當(dāng)一條垂直于底邊BC(垂足為F)的直線lB點(diǎn)開(kāi)始由左至右移動(dòng)(與梯形ABCD有公共點(diǎn))時(shí),直線l把梯形分成兩部分,令BFx(0≤x≤7),左邊部分的面積為y,求yx之間的函數(shù)關(guān)系式,畫(huà)出程序框圖,并寫(xiě)出程序.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)pfx)=1+ax,在(0,2]fx≥0恒成立,q函數(shù)gx)=ax+2lnx在其定義域上存在極值.

(1)若p為真命題,求實(shí)數(shù)a的取值范圍;

(2)如果pq為真命題,pq為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,一藝術(shù)拱門由兩部分組成,下部為矩形的長(zhǎng)分別為,上部是圓心為的劣弧,

1)求圖1中拱門最高點(diǎn)到地面的距離;

2)現(xiàn)欲以B點(diǎn)為支點(diǎn)將拱門放倒,放倒過(guò)程中矩形所在的平面始終與地面垂直,如圖2、圖3、圖4所示.設(shè)與地面水平線所成的角為.記拱門上的點(diǎn)到地面的最大距離為,試用的函數(shù)表示,并求出的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題不正確的是(

A.,且,則

B.,且,則

C.若直線直線,則直線與直線確定一個(gè)平面

D.三點(diǎn)確定一個(gè)平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,,分別是通過(guò)某城市開(kāi)發(fā)區(qū)中心O的兩條東西和南北走向的街道,連接M,N兩地間的鐵路是圓心在上的一段圓弧.若點(diǎn)M在點(diǎn)O正北方向,且,點(diǎn)N,的距離分別為5km和4km

(1)建立適當(dāng)?shù)淖鴺?biāo)系,求鐵路路線所在圓弧的方程.

(2)若該城市的某中學(xué)擬在點(diǎn)O正東方向選址建分校,考慮環(huán)境問(wèn)題,要求校址到點(diǎn)O的距離大于4km,并且鐵路上任意一點(diǎn)到校址的距離不能小于km,求該校址距點(diǎn)O的最近距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)點(diǎn)為拋物線外一點(diǎn),過(guò)點(diǎn)作拋物線的兩條切線,,切點(diǎn)分別為,

(Ⅰ)若點(diǎn),求直線的方程;

(Ⅱ)若點(diǎn)為圓上的點(diǎn),記兩切線的斜率分別為,,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案