設(shè)全集U是實(shí)數(shù)集R,M={x||2x-3|≥4},N={x|log
1
3
(x+2)≥0},則M∩N=( 。
A、{x|x≤-
3
2
}
B、{x|-2<x≤-
1
2
}
C、{x|-
3
2
≤x≤-1}
D、{x|-2<x≤-1}
考點(diǎn):交集及其運(yùn)算
專題:集合
分析:根據(jù)不等式求出對(duì)應(yīng)集合的等價(jià)條件,利用集合的基本運(yùn)算即可得到結(jié)論.
解答: 解:M={x||2x-3|≥4}={x|2x-3≥4或2x-3≤-4}={x|x≥
7
2
或x≤-
1
2
},
N={x|log
1
3
(x+2)≥0}={x|0<x+2≤1}={x|-2<x≤-1},
則M∩N={x|-2<x≤-1},
故選:D.
點(diǎn)評(píng):本題主要考查集合的基本運(yùn)算,利用不等式的解法求出集合對(duì)應(yīng)元素是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|1≤x≤2},B={1,2,3,4},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1
0
(x2+2x+1)dx=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=(
1
2
x-
2
n,其中n=3
π
2
-
π
2
cosxdx,則f(x)的展開(kāi)式中x2的系數(shù)為( 。
A、15B、-15
C、60D、-60

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合P={x|
x
x-1
≤0},Q={x||x-
3
2
|≤
3
2
},那么“m∈P”是“m∈Q”的(  )
A、充分不必要條件
B、必要而不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)i為虛數(shù)單位,復(fù)數(shù)
2+i
i2
在復(fù)平面上對(duì)應(yīng)的點(diǎn)在(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U=R,集合A={y|y≥0},集合B={x|1≤x≤3},則如圖所示的陰影部分表示的集合是( 。
A、{x|0≤x<1,或x>3}
B、{x|0≤x<1}
C、{x|x>3}
D、{x|1≤x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線y=cosx,其中x∈[0,
3
2
π],則該曲線與坐標(biāo)軸圍成的面積等于( 。
A、1
B、2
C、
5
2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=x2+bx+c.試說(shuō)明“b,c均為奇數(shù)”是“方程f(x)=0無(wú)整數(shù)根”的充分而不必要條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案