在等差數(shù)列{an}中,a1=-8,它的前16項的平均值為7,若從中抽取一項,余下的15項的平均值是
36
5
,則抽取的是( 。
A、第7項B、第8項
C、第15項D、第16項
考點:等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:易得抽取的項為4,由求和公式可得公差d=2,再由通項公式易得答案.
解答: 解:由題意可得抽取的項為16×7-15×
36
5
=4,
設(shè)等差數(shù)列{an}的公差為d,則數(shù)列的前16項和
S16=-8×16+
16×15
2
d=16×7,解得d=2,
設(shè)4為數(shù)列的第n項,則-8+2(n-1)=4,解得n=7
故選:A
點評:本題考查等差數(shù)列的通項公式和求和公式,屬基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在四棱錐P-ABCD中,底面是邊長為2的菱形,∠BAD=60°,PA=PD=3,PD⊥CD.E為AB中點.
(Ⅰ)證明:PE⊥CD;
(Ⅱ)求二面角C-PE-D的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足:an+2=3an+1-2an,a1=2,a2=4,n∈N*
(Ⅰ)求證:數(shù)列{an+1-an}為等比數(shù)列,并求數(shù)列{an}的通項公式;
(Ⅱ)若bn=an(an+1),{bn}的前n項和記為Sn,求Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示的一塊木料中,棱BC平行于面A′C′.
(Ⅰ)要經(jīng)過面A′C′內(nèi)的一點P和棱BC將木料鋸開,應(yīng)怎樣畫線?(寫出畫法步驟,并在圖中畫出)
(Ⅱ)說明所畫的線與平面AC的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的一個焦點為F(0,1),離心率e=
1
2
,則該橢圓的標準程為( 。
A、
x2
3
+
y2
4
=1
B、
x2
4
+
y2
3
=1
C、
x2
2
+y2=1
D、x2+
y2
2
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)A、B為橢圓
x2
16
+
y2
9
=1上任意兩點,O為坐標原點,則“OA⊥OB”是“O到直線AB的距離為
12
5
”的(  )
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的上頂點到焦點的距離為2,離心率為
3
2

(1)求橢圓C的方程;
(2)設(shè)P是橢圓C長軸上的一個動點,過點P作斜率為k的直線l交橢圓C于A、B兩點.若|PA|2+|PB|2的值與點P的位置無關(guān),求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知tan(7π+α)=-2.
(1)求
cos2α-2sin2α
sin2α+3cos2α
的值;
(2)若α是第二象限角,求
sin(π-α)cos(
π
2
+α)-tan(3π+α)
sin(4π-α)sin(
2
+α)
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,以O(shè)為極點,x軸正半軸為極軸建立極坐標系,直線l1的極坐標方程為θ=
π
4
,與直線l2
x=2t
y=t+1
的交點為A,曲線C:
x=2
2
cosα
y=2
2
sinα

(Ⅰ)求A的極坐標;
(Ⅱ)求C過點A的切線的極坐標方程.

查看答案和解析>>

同步練習冊答案