精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)是定義在R上的奇函數,并且當x∈(0,+∞)時,f(x)=2x.

(1)f(log2)的值;

(2)f(x)的解析式.

【答案】(1)3. (2) f(x).

【解析】

試題(1)因為f(x)為奇函數,且當x(0,+)時,f(x)2x,

所以f(log2)f(log23)=-f(log23)=-2log23=-3. (6)

(2)設任意的x(,0),則-x(0,+),

因為當x(0,+)時,f(x)2x,所以f(x)2x

又因為f(x)是定義在R上的奇函數,則f(x)=-f(x),

所以f(x)=-f(x)=-2x,即當x(0)時,f(x)=-2x; (8)

又因為f(0)=-f(0),所以f(0)0, (10分)

綜上可知,f(x). (12分)

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】“禿發(fā)”是一種常見的毛發(fā)疾病,隨著發(fā)病人群年齡結構的年變化,逐漸引起了社會的廣泛關注.一個人出生時頭發(fā)數量約為100000根,數學徐老師建立了“禿發(fā)”函數模型作預估:一個人歲時的頭發(fā)根數為,其中稱為“脫發(fā)指數”.

1)杜老師5歲時有74375根頭發(fā),請依據模型求出杜老師的“脫發(fā)指數”的值;

2)徐老師的學生認為“禿發(fā)”函數模型中有兩個缺點:①頭發(fā)的根數應該為整數;②頭發(fā)的根數不能為負數,徐老師感覺很有道理,將模型作了兩處修正,請寫出修正后(1)問中杜老師的“禿發(fā)”函數模型,并求出杜老師幾歲時頭發(fā)最多.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知下列四個命題:

①函數滿足:對任意;

②函數均為奇函數;

③若函數上有意義,則的取值范圍是;

④設是關于的方程,()的兩根,;

其中正確命題的序號是__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知為偶函數.

1)求實數的值,并寫出在區(qū)間上的增減性和值域(不需要證明);

2)令,其中,若對任意、,總有,求的取值范圍;

3)令,若對任意,總有,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1)求函數的最小正周期、單調區(qū)間;

2)求函數在區(qū)間上的最小值和最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】口袋里裝有1紅,2白,3黃共6個形狀相同的小球,從中取出2球,事件取出的兩球同色,取出的2球中至少有一個黃球取出的2球至少有一個白球,取出的兩球不同色取出的2球中至多有一個白球”.下列判斷中正確的序號為________.

為對立事件;②是互斥事件;③是對立事件:④;⑤.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,三棱柱ABCA1B1C1中,側棱AA1⊥底面A1B1C1,AA11,底面三角形A1B1C1是邊長為2的正三角形,EBC中點,則下列說法正確的是(

CC1AB1所成角的余弦值為

AB⊥平面ACC1A1

③三角形AB1E為直角三角形

A1C1∥平面AB1E

A.①②B.③④C.①③D.②④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數fx)=Asin(2ωx+φ)(A>0,ω>0,|φ|<)的部分圖象如圖所示

(1)求A,ω,φ的值;

(2)求圖中a,b的值及函數fx)的遞增區(qū)間;

(3)若α∈[0,π],且f(α)=,求α的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】哈師大附中高三學年統(tǒng)計甲、乙兩個班級一模數學分數(滿分150分),每個班級20名同學,現有甲、乙兩位同學的20次成績如下列莖葉圖所示:

(I)根據基葉圖求甲、乙兩位同學成績的中位數,并將乙同學的成績的頻率分布直方圖填充完整;

(Ⅱ)根據基葉圖比較甲乙兩位同學數學成績的平均值及穩(wěn)定程度(不要求計算出具體值,給出結論即可)

(Ⅲ)現從甲乙兩位同學的不低于140分的成績中任意選出2個成績,設事件為“其中2 個成績分別屬于不同的同學”,求事件發(fā)生的概率.

查看答案和解析>>

同步練習冊答案