【題目】已知橢圓E: ,對于任意實數(shù)k,下列直線被橢圓E截得的弦長與l:y=kx+1被橢圓E截得的弦長不可能相等的是( )
A. kx+y+k=0 B. kx-y-1=0
C. kx+y-k=0 D. kx+y-2=0
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)高二年級組織外出參加學(xué)業(yè)水平考試,出行方式為:乘坐學(xué)校定制公交或自行打車前往,大數(shù)據(jù)分析顯示,當(dāng)的學(xué)生選擇自行打車,自行打車的平均時間為 (單位:分鐘) ,而乘坐定制公交的平均時間不受影響,恒為40分鐘,試根據(jù)上述分析結(jié)果回答下列問題:
(1)當(dāng)在什么范圍內(nèi)時,乘坐定制公交的平均時間少于自行打車的平均時間?
(2)求該校學(xué)生參加考試平均時間的表達(dá)式:討論的單調(diào)性,并說明其實際意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求在上的最小值;
(2)若關(guān)于的不等式有且只有三個整數(shù)解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的直徑,點B是上與A,C不重合的動點,平面.
(1)當(dāng)點B在什么位置時,平面平面,并證明之;
(2)請判斷,當(dāng)點B在上運動時,會不會使得,若存在這樣的點B,請確定點B的位置,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐中, 和是邊長為的等邊三角形, , 分別是的中點.
(1)求證: 平面;
(2)求證: 平面;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】①若直線與曲線有且只有一個公共點,則直線一定是曲線的切線;
②若直線與曲線相切于點,且直線與曲線除點外再沒有其他的公共點,則在點附近,直線不可能穿過曲線;
③若不存在,則曲線在點處就沒有切線;
④若曲線在點處有切線,則必存在.
則以上論斷正確的個數(shù)是( )
A.0個B.1個C.2個D.3個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知六棱錐P﹣ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=AB,則下列結(jié)論正確的是_____.(填序號)①PB⊥AD;②平面PAB⊥平面PBC;③直線BC∥平面PAE;④sin∠PDA.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中,已知,,,D是邊AC上一點,將沿BD折起,得到三棱錐.若該三棱錐的頂點A在底面BCD的射影M在線段BC上,設(shè),則x的取值范圍為()
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓,軸被曲線截得的線段長等于C1的長半軸長.
(1)求實數(shù)b的值;
(2)設(shè)C2與軸的交點為M,過坐標(biāo)原點O的直線與C2相交于點A、B,直線MA、MB分別與C1交于點D、E.
①證明:;
②記△MAB,△MDE的面積分別是若,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com