已知函數(shù)f(x)=(1+)sin2x+msin(x+)sin(x-).
(1)當(dāng)m=0時(shí),求f(x)在區(qū)間[]上的取值范圍;
(2)當(dāng)tan α=2時(shí),f(α)=,求m的值.

(1)[0,];(2)

解析試題分析:(1)把m=0代入到f(x)中,然后分別利用同角三角函數(shù)間的基本關(guān)系、二倍角的正弦、余弦函數(shù)公式以及特殊角的三角函數(shù)值把f(x)化為一個(gè)角的正弦函數(shù),利用x的范圍求出此正弦函數(shù)角的范圍,根據(jù)角的范圍,利用正弦函數(shù)的圖象即可得到f(x)的值域;
(2)把f(x)的解析式利用二倍角的正弦、余弦函數(shù)公式及積化和差公式化簡得到關(guān)于sin2x和cos2x的式子,把x換成α,根據(jù)tanα的值,利用同角三角函數(shù)間的基本關(guān)系以及二倍角的正弦函數(shù)公式化簡求出sin2α和cos2α的值,把sin2α和cos2α的值代入到f(α)=中得到關(guān)于m的方程,求出m的值即可.
試題解析:(1)當(dāng)m=0時(shí),f(x)=(1+)sin2x=sin2x+sinxcosx=,由已知,得,從而得的值域?yàn)閇0,].
由f(x)=(1+)sin2x+msin(x+)sin(x-)
,所以?,當(dāng),得,,代入?式得
考點(diǎn):1.三角函數(shù)的圖象和性質(zhì);2.同角三角函數(shù)間的基本關(guān)系 ;3.已知三角函數(shù)值求值問題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在△ABC中,內(nèi)角A,B,C所對(duì)邊長分別為,,.
(1)求的最大值及的取值范圍;
(2)求函數(shù)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知tanα,是關(guān)于x的方程x2-kx+k2-3=0的兩實(shí)根,且3π<α<π,
求cos(3π+α)-sin(π+α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)-sin(2x-).
(1)求函數(shù)的最大值和最小值;
(2)的內(nèi)角的對(duì)邊分別為,,f()=,若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,且,
設(shè),的圖象相鄰兩對(duì)稱軸之間的距離等于
(1)求函數(shù)的解析式;
(2)在△ABC中,分別為角的對(duì)邊,,,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某單位有、、三個(gè)工作點(diǎn),需要建立一個(gè)公共無線網(wǎng)絡(luò)發(fā)射點(diǎn),使得發(fā)射點(diǎn)到三個(gè)工作點(diǎn)的距離相等.已知這三個(gè)工作點(diǎn)之間的距離分別為,,.假定、、四點(diǎn)在同一平面內(nèi).
(Ⅰ)求的大小;
(Ⅱ)求點(diǎn)到直線的距

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,內(nèi)角所對(duì)邊長分別為,,.
(1)求的最大值;  (2)求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) x∈R且,
(Ⅰ)求的最小正周期;
(Ⅱ)函數(shù)f(x)的圖象經(jīng)過怎樣的平移才能使所得圖象對(duì)應(yīng)的函數(shù)成為偶函數(shù)?(列舉出一種方法即可).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn)是函數(shù)圖象上的任意兩點(diǎn),若時(shí),的最小值為,且函數(shù)的圖像經(jīng)過點(diǎn)
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)在中,角的對(duì)邊分別為,且,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案