解:(1)證明:∵函數(shù)的定義域關(guān)于原點對稱,且函數(shù)
,x≠0 滿足
∴對任意的非零實數(shù)x,都有 f(-x)=-x+
=-(
)=-f(x),
函數(shù)
,x≠0是奇函數(shù). (5分)
(2)設(shè) 0<x
1<x
2<
,則 f(x
1)-f(x
2)=
-(
)
=(x
1-x
2)-
=(x
1-x
2) (1-
).
由0<x
1<x
2,可得(x
1-x
2)<0,(1-
)<0,
∴(x
1-x
2) (1-
)>0,f(x
1)>f(x
2),故函數(shù)在(0,
)上單調(diào)遞減.
設(shè)
<x
1<x
2,同理可得 f(x
1)-f(x
2)=(x
1-x
2) (1-
),
由
<x
1<x
2,可得(x
1-x
2)<0,(1-
)>0,
∴(x
1-x
2) (1-
)<0,f(x
1)<f(x
2),故函數(shù)在(
)上單調(diào)遞增.(10分)
(3)由于函數(shù)在(1,
)上單調(diào)遞減,在[
]上單調(diào)遞增,
故當(dāng)x=
時,函數(shù)有最小值等于
=
=2
.
又 f(1)=1+2=3,f(4)=4+
=
,故函數(shù)在[1,4]上的最大值為
.(14分)
分析:(1)由函數(shù)的定義域關(guān)于原點對稱,對任意的非零實數(shù)x,都有 f(-x)=-f(x),即可證明函數(shù)為奇函數(shù).
(2)設(shè) 0<x
1<x
2<
,化簡f(x
1)-f(x
2) 的解析式為(x
1-x
2) (1-
)>0,可得函數(shù)在
(0,
)上單調(diào)遞減,同理可證函數(shù)在(
)上單調(diào)遞增.
(3)由于函數(shù)在(1,
)上單調(diào)遞減,在[
]上單調(diào)遞增,故當(dāng)x=
時,函數(shù)有最小值等于
,
f(1)和f(4)中較大的就是函數(shù)在[1,4]上的最大值.
點評:本題主要考查函數(shù)的單調(diào)性和奇偶性的證明,利用函數(shù)的單調(diào)性求函數(shù)在閉區(qū)間上的最值,屬于基礎(chǔ)題.