【題目】某中學調查了某班全部45名同學參加書法社團和演講社團的情況,數(shù)據如下表:(單位:人)
參加書法社團 | 未參加書法社團 | |
參加演講社團 | 8 | 5 |
未參加演講社團 | 2 | 30 |
(1)從該班隨機選1名同學,求該同學至少參加一個社團的概率;
(2)在既參加書法社團又參加演講社團的8名同學中,有5名男同學A1 , A2 , A3 , A4 , A5 , 3名女同學B1 , B2 , B3 . 現(xiàn)從這5名男同學和3名女同學中各隨機選1人,求A1被選中且B1未被選中的概率.
【答案】
(1)解:設“至少參加一個社團”為事件A;
從45名同學中任選一名有45種選法,∴基本事件數(shù)為45;
通過列表可知事件A的基本事件數(shù)為8+2+5=15;
這是一個古典概型,∴P(A)= ;
(2)解:從5名男同學中任選一個有5種選法,從3名女同學中任選一名有3種選法;
∴從這5名男同學和3名女同學中各隨機選1人的選法有5×3=15,即基本事件總數(shù)為15;
設“A1被選中,而B1未被選中”為事件B,顯然事件B包含的基本事件數(shù)為2;
這是一個古典概型,∴ .
【解析】(1)先判斷出這是一個古典概型,所以求出基本事件總數(shù),“至少參加一個社團”事件包含的基本事件個數(shù),從而根據古典概型的概率計算公式計算即可;(2)先求基本事件總數(shù),即從這5名男同學和3名女同學中各隨機選1人,有多少中選法,這個可利用分步計數(shù)原理求解,再求出“A1被選中,而B1未被選中”事件包含的基本事件個數(shù),這個容易求解,然后根據古典概型的概率公式計算即可.
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的各項均為正數(shù),其前n項的和為Sn , 且對任意的m,n∈N*,
都有(Sm+n+S1)2=4a2ma2n .
(1)求 的值;
(2)求證:{an}為等比數(shù)列;
(3)已知數(shù)列{cn},{dn}滿足|cn|=|dn|=an , p(p≥3)是給定的正整數(shù),數(shù)列{cn},{dn}的前p項的和分別為Tp , Rp , 且Tp=Rp , 求證:對任意正整數(shù)k(1≤k≤p),ck=dk .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,以橢圓的一個短軸端點及兩個焦點構成的三角形的面積為,圓C方程為.
(1)求橢圓及圓C的方程;
(2)過原點O作直線l與圓C交于A,B兩點,若,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖已知拋物線的焦點坐標為,過的直線交拋物線于兩點,直線分別與直線:相交于兩點.
(1)求拋物線的方程;
(2)證明△ABO與△MNO的面積之比為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班50名學生在一次百米測試中,成績全部介于13秒與18秒之間,將測試結果按如下方式分成五組;第一組[13,14),第二組[14,15),…,第五組[17,18],如圖是按上述分組方法得到的頻率分布直方圖.
(1)若成績大于或等于14秒且小于16秒認為良好,求該班在這次百米測試中成績良好的人數(shù);
(2)設m,n表示該班某兩位同學的百米測試成績,且已知m,n∈[13,14)∪[17,18],求事件“|m﹣n|>1”的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖莖葉圖記錄了甲、乙兩組各四名同學的植樹棵樹.乙組記錄中有一個數(shù)據模糊,無法確認,在圖中以X表示.
(注:方差 ,其中 為x1 , x2 , …xn的平均數(shù))
(1)如果X=8,求乙組同學植樹棵樹的平均數(shù)和方差;
(2)如果X=9,分別從甲、乙兩組中隨機選取一名同學,求這兩名同學的植樹總棵數(shù)為19的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】袋中有大小相同的紅、黃兩種顏色的球各1個,從中任取1只,有放回地抽取3次. 求:
(1)3只全是紅球的概率;
(2)3只顏色全相同的概率;
(3)3只顏色不全相同的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com