【題目】已知曲線上動(dòng)點(diǎn)與定點(diǎn)的距離和它到定直線的距離的比是常數(shù),若過的動(dòng)直線與曲線相交于兩點(diǎn)
(1)說明曲線的形狀,并寫出其標(biāo)準(zhǔn)方程;
(2)是否存在與點(diǎn)不同的定點(diǎn),使得恒成立?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由
【答案】(1)曲線是橢圓,它的標(biāo)準(zhǔn)方程為;(2)存在點(diǎn)滿足題意
【解析】
(1)先設(shè)動(dòng)點(diǎn)坐標(biāo)為,根據(jù)題意列出等式,化簡整理即可求出結(jié)果;
(2)分情況討論如下:當(dāng)直線與軸垂直時(shí),易得點(diǎn)必在軸上.;當(dāng)直線與軸垂直時(shí),易得點(diǎn)的坐標(biāo)只可能是;再證明直線斜率存在且時(shí)均有即可.
(1)設(shè)動(dòng)點(diǎn)坐標(biāo)為
點(diǎn)到直線的距離為.依題意可知
則
化簡得
所以曲線是橢圓,它的標(biāo)準(zhǔn)方程為
(2)①當(dāng)直線與軸垂直時(shí),由橢圓的對(duì)稱性可知,又因?yàn)?/span>,則
從而點(diǎn)必在軸上.
②當(dāng)直線與軸垂直時(shí),則,由①可設(shè),
由得,解得(舍去),或.
則點(diǎn)的坐標(biāo)只可能是.
下面只需證明直線斜率存在且時(shí)均有即可.
設(shè)直線的方程為,代入得.
設(shè)
所以
設(shè)點(diǎn)關(guān)于軸對(duì)稱的點(diǎn)坐標(biāo)
因?yàn)橹本的斜率
同理得直線的斜率
,三點(diǎn)共線.
故.
所以存在點(diǎn)滿足題意.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系O中,直線與拋物線=2相交于A、B兩點(diǎn).
(1)求證:命題“如果直線過點(diǎn)T(3,0),那么=3”是真命題;
(2)寫出(1)中命題的逆命題,判斷它是真命題還是假命題,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax-3lnx(a為常數(shù))與函數(shù)g(x)=-xlnx在x=1處的切線互相平行.
(1)求a的值;
(2)求函數(shù)y=f(x)在[1,2]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人有樓房一幢,室內(nèi)總面積為,擬分割成兩類房間作為旅游客房,有關(guān)的數(shù)據(jù)如下表:
大房間 | 小房間 | |
每間的面積 | ||
每間裝修費(fèi) | 元 | 6000元 |
每天每間住人數(shù) | 5人 | 3人 |
每天每人住宿費(fèi) | 80元 | 100元 |
如果他只能籌款80000元用于裝修,且游客能住滿客房,他應(yīng)隔出大房間和小房間各多少間,能獲得的住宿總收入最多?每天獲得的住宿總收入最多是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中的真命題是( )
A. 若,則向量與的夾角為鈍角
B. 若,則
C. 若命題“是真命題”,則命題“是真命題”
D. 命題“,”的否定是“,”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個(gè)問題:“三百七十八里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān)……”其大意為:“某人從距離關(guān)口三百七十八里處出發(fā),第一天走得輕快有力,從第二天起,由于腳痛,每天走的路程為前一天的一半,共走了六天到達(dá)關(guān)口……” 那么該人第一天走的路程為______________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)在點(diǎn)處切線斜率為0,求的值;
(2)求函數(shù) 的單調(diào)遞增區(qū)間;
(3)若在處取得極大值,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,,離心率為,過右焦點(diǎn)作直線交橢圓于,兩點(diǎn),的周長為,點(diǎn).
(1)求橢圓的方程;
(2)設(shè)直線、的斜率,,請(qǐng)問是否為定值?若是定值,求出其定值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;
(2)若函數(shù)的圖象與軸交于兩點(diǎn),且,求的取值范圍;
(3)在(2)的條件下,證明:為函數(shù)的導(dǎo)函數(shù)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com