【題目】交警隨機(jī)抽取了途經(jīng)某服務(wù)站的40輛小型轎車在經(jīng)過某區(qū)間路段的車速(單位: ),現(xiàn)將其分成六組為, , , 后得到如圖所示的頻率分布直方圖.

(1)某小型轎車途經(jīng)該路段,其速度在以上的概率是多少?

(2)若對車速在 兩組內(nèi)進(jìn)一步抽測兩輛小型轎車,求至少有一輛小型轎車速度在內(nèi)的概率.

【答案】(1) (2)

【解析】試題分析:(1)根據(jù)頻率和為1,求出速度在70km/h以上的頻率即可;

(2)求出40輛車中車速在[60,65)以及[65,70)內(nèi)的車輛,利用列舉法計算基本事件數(shù),求出對應(yīng)的概率值.

試題解析:

(1)速度在以上的概率約為

.

(2)40輛小型轎車車速在范圍內(nèi)有2輛,在范圍內(nèi)有4輛.

表示范圍內(nèi)2輛小型轎車,用表示車速在范圍內(nèi)有4輛小型轎車,則所有基本事件為, ,至少有一輛小型轎車車速在范圍內(nèi)

事件有

所以所求概率

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過拋物線的焦點(diǎn)的直線與拋物線交于,兩點(diǎn),若在準(zhǔn)線上的射影為,則等于(  ).

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知函數(shù)

(1)若,,求不等式的解;

(2)對任意,,試確定函數(shù)的最小值(用含的代數(shù)式表示),若正數(shù)、滿足,則、分別取何值時,有最小值,并求出此最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個生產(chǎn)公司投資A生產(chǎn)線500萬元,每萬元可創(chuàng)造利潤萬元,該公司通過引進(jìn)先進(jìn)技術(shù),在生產(chǎn)線A投資減少了x萬元,且每萬元的利潤提高了;若將少用的x萬元全部投入B生產(chǎn)線,每萬元創(chuàng)造的利潤為萬元,其中

若技術(shù)改進(jìn)后A生產(chǎn)線的利潤不低于原來A生產(chǎn)線的利潤,求x的取值范圍;

若生產(chǎn)線B的利潤始終不高于技術(shù)改進(jìn)后生產(chǎn)線A的利潤,求a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中, , , ,若該三棱錐的四個頂點(diǎn)均在同一球面上,則該球的體積為( )

A. B. C. D.

【答案】D

【解析】在三棱錐中,因?yàn)?/span>, , ,所以,則該幾何體的外接球即為以為棱長的長方體的外接球,則 ,其體積為 ;故選D.

點(diǎn)睛:在處理幾何體的外接球問題,往往將所給幾何體與正方體或長方體進(jìn)行聯(lián)系,常用補(bǔ)體法補(bǔ)成正方體或長方體進(jìn)行處理,本題中由數(shù)量關(guān)系可證得 從而幾何體的外接球即為以為棱長的長方體的外接球,也是處理本題的技巧所在.

型】單選題
結(jié)束】
21

【題目】已知函數(shù),則的大致圖象為(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線的焦點(diǎn)為,直線過點(diǎn)且依次交拋物線及圓四點(diǎn),則的最小值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一次數(shù)學(xué)知識競賽中,兩組學(xué)生成績?nèi)缦卤恚?/span>

分?jǐn)?shù)

50

60

70

80

90

100

人數(shù)

甲組

2

5

10

13

14

6

乙組

4

4

16

2

12

12

已經(jīng)算得兩個組的平均分都是80分,請根據(jù)你所學(xué)過的統(tǒng)計知識,進(jìn)一步判斷這兩個組這次競賽中成績誰優(yōu)誰次,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】運(yùn)動會時,高一某班共有28名同學(xué)參加比賽,每人至多報兩個項(xiàng)目.15人參加游泳,8人參加田徑,14人參加球類.同時參加游泳和田徑的有3人,同時參加游泳和球類的有3人,則只參加一個項(xiàng)目的有______人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是邊長為1的正方形,垂直于底面,.

1)求平面與平面所成二面角的大;

2)設(shè)棱的中點(diǎn)為,求異面直線所成角的大小.

查看答案和解析>>

同步練習(xí)冊答案