【題目】如圖,圓錐PO中,AB是圓O的直徑,且AB4,C是底面圓O上一點(diǎn),且AC2,點(diǎn)D為半徑OB的中點(diǎn),連接PD.

1)求證:PC在平面APB內(nèi)的射影是PD

2)若PA4,求底面圓心O到平面PBC的距離.

【答案】1)證明見解析;(2

【解析】

1)由題意推導(dǎo)出△BOC是正三角形,CDOB,OPCD,從而CD⊥平面PAB,即可得證;

2)設(shè)點(diǎn)O到平面PBC的距離為d,由題意可得,,由,即可得解.

1)證明:連接CD、OC,如圖:

AB4,ACBC,∴,

OBOC,∴△BOC是正三角形,

D點(diǎn)是OB的中點(diǎn),∴CDOB,

PO⊥平面ABC,∴OPCD,

OPOBO,∴CD⊥平面PAB,

PC在平面APB內(nèi)的射影是PD;

2)由PA4,可知,PBPC4,

,

,

設(shè)點(diǎn)O到平面PBC的距離為d

,解得

∴底面圓心O到平面PBC的距離為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為橢圓的左、右頂點(diǎn), 為其右焦點(diǎn), 是橢圓上異于的動(dòng)點(diǎn),且面積的最大值為.

(1)求橢圓的方程;

(2)直線與橢圓在點(diǎn)處的切線交于點(diǎn),當(dāng)點(diǎn)在橢圓上運(yùn)動(dòng)時(shí),求證:以 為直徑的圓與直線恒相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=Asin(ωxφ)(A≠0,ω>0,φ<)的圖象關(guān)于直線對(duì)稱,它的最小正周期為π,則(   )

A. f(x)的圖象過點(diǎn)(0,) B. f(x)上是減函數(shù)

C. f(x)的一個(gè)對(duì)稱中心是 D. f(x)的一個(gè)對(duì)稱中心是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】判斷下列函數(shù)的奇偶性:

1;

2;

3;

4

5;

6;

7;

8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定下列四個(gè)命題,其中真命題是(

A.垂直于同一直線的兩條直線相互平行

B.若一個(gè)平面內(nèi)的兩條直線與另一個(gè)平面都平行,那么這兩個(gè)平面相互平行

C.垂直于同一平面的兩個(gè)平面相互平行

D.若兩個(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線不垂直的直線與另一個(gè)平面也不垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于下列命題:

①若是第一象限角,且,則

②函數(shù)是偶函數(shù);

③函數(shù)的一個(gè)對(duì)稱中心是;

④函數(shù)上是增函數(shù),

所有正確命題的序號(hào)是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小區(qū)要建一個(gè)八邊形的休閑區(qū),如圖所示,它的主要造型平面圖是由兩個(gè)相同的矩形構(gòu)成的面積為的十字形區(qū)域.計(jì)劃在正方形上建一個(gè)花壇,造價(jià)為4200/,在四個(gè)相同的矩形(圖中陰影部分)上鋪設(shè)花崗巖地面,造價(jià)為210/,再在四個(gè)等腰直角三角形上鋪設(shè)草坪,造價(jià)為80/.求當(dāng)的長(zhǎng)度為多少時(shí),建設(shè)這個(gè)休閑區(qū)的總價(jià)最低.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在甲、乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于等于120分為優(yōu)秀,120分以下為非優(yōu)秀統(tǒng)計(jì)成績(jī)后,得到如下的2×2列聯(lián)表.已知在全部105人中抽到隨機(jī)抽取1人為優(yōu)秀的概率為

優(yōu)秀

非優(yōu)秀

總計(jì)

甲班

10

乙班

30

合計(jì)

(1)請(qǐng)完成上面的列聯(lián)表;

(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按95%的可能性要求,能否認(rèn)為“成績(jī)與班級(jí)有關(guān)系”?

P(K2≥x0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

x0

0.455

0.708

1.323

2.072

2.076

3.841

5.024

6.635

7.879

10.828

參考公式及數(shù)據(jù):K2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求二次函數(shù)分別在下列定義域上的最大值和最小值.

1R;

2;

3.

查看答案和解析>>

同步練習(xí)冊(cè)答案