已知數(shù)列為等比數(shù)列,其前項(xiàng)和為,已知,且,成等差,
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)已知),記,若對于恒成立,求實(shí)數(shù)的取值范圍.

(Ⅰ);(Ⅱ).

解析試題分析:(Ⅰ)本小題主要利用等比數(shù)列通項(xiàng)公式公式和前項(xiàng)和公式求得數(shù)列的首項(xiàng)和公比,然后可以求得等比數(shù)列的通項(xiàng)公式;
(Ⅱ)本小題通過分析可得求和需用錯(cuò)位相減求和的方法,然后代入到不等式中,根據(jù)函數(shù)的單調(diào)性可得.
試題解析:(Ⅰ)設(shè)的公比為,成等差,
,       1分
,得
(舍去),    3分
,
,       5分
(Ⅱ),                   6分



               10分
對于恒成立,則
,恒成立           12分
,
所以當(dāng)時(shí),,為減函數(shù),       14分
                     15分
考點(diǎn):1.等比數(shù)列;2.錯(cuò)位相減求和.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)表示數(shù)列的前項(xiàng)和.
(1)若為公比為的等比數(shù)列,寫出并推導(dǎo)的計(jì)算公式;
(2)若,求證:<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列,是其前項(xiàng)的和,且滿足,對一切都有成立,設(shè)
(1)求;
(2)求證:數(shù)列 是等比數(shù)列;
(3)求使成立的最小正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列項(xiàng)和,數(shù)列滿足),
(1)求數(shù)列的通項(xiàng)公式;
(2)求證:當(dāng)時(shí),數(shù)列為等比數(shù)列;
(3)在(2)的條件下,設(shè)數(shù)列的前項(xiàng)和為,若數(shù)列中只有最小,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)和為,
(1)求,;
(2)設(shè),證明:數(shù)列是等比數(shù)列;
(3)求數(shù)列的前項(xiàng)和為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列滿足:①;②對于任意正整數(shù)都有成立.
(Ⅰ)求的值;
(Ⅱ)求數(shù)列的通項(xiàng)公式;
(Ⅲ)若,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列滿足:記數(shù)列的前項(xiàng)和為
(1)求數(shù)列的通項(xiàng)公式;
(2)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,且,.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等比數(shù)列中,,求其第4項(xiàng)及前5項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊答案