曲線f(x)=x3+x2+1在點(1,f(1))處的切線方程為
 
考點:利用導數(shù)研究曲線上某點切線方程
專題:計算題,導數(shù)的概念及應用
分析:求出曲線f(x)=x3+x2+1在點(1,f(1))處的導數(shù)值,這個導數(shù)值即函數(shù)圖象在該點處的切線的斜率,然后根據(jù)直線的點斜式方程求解即可.
解答: 解:因為f(x)=x3+x2+1,
所以f′(x)=3x2+2x,f(1)=3
所以曲線y=x3+x2+1在點(1,f(1))處的切線的斜率為5.
此處的切線方程為y=5x-2
故答案為:y=5x-2.
點評:本題考查導數(shù)的幾何意義、關鍵是求出直線的斜率,正確利用直線的點斜式方程,考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2|x-2|+ax(x∈R)有最小值,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義某種運算?,S=a?b的運算原理如圖:則式子5?2+3?4=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

極坐標方程θ=
π
2
+arcsinρ(ρ≥0)化為直角坐標方程的形式是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x∈[0,4],則滿足不等式log
1
2
(x-1)>0的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在橢圓
x2
a2
+
y2
b2
=1(a>b>0)中F,A,B分別為其左焦點,右頂點,上頂點,O為坐標原點,M為線段OB的中點,若△FMA為直角三角形,則該橢圓的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
(1)設A、B為兩個定點,k為非零常數(shù),|
PA
|-|
PB
|=k,則動點P的軌跡為雙曲線;
(2)若等比數(shù)列的前n項和sn=2n+k,則必有k=-1;
(3)若x∈R+,則2x+2-x的最小值為2;
(4)雙曲線
x2
25
-
y2
9
=1與橢圓
x2
35
+y2=1有相同的焦點;
(5)平面內到定點(3,-1)的距離等于到定直線x+2y-1=0的距離的點的軌跡是拋物線.其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足任意的m,n∈N*有am-n=am+an+2mn成立,且a1=1,則a2014的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一大學生畢業(yè)找工作,在面試考核中,他共有三次答題機會(每次問題不同).假設他能正確回答每題的概率均為
2
3
,規(guī)定有兩次回答正確即通過面試,那么該生“通過面試”的概率為
 

查看答案和解析>>

同步練習冊答案