【題目】已知等差數(shù)列的首項(xiàng),公差.且、、分別是等比數(shù)列的第2、3、4項(xiàng).
(1)求數(shù)列與的通項(xiàng)公式;
(2)設(shè)數(shù)列滿(mǎn)足,求的值(結(jié)果保留指數(shù)形式).
【答案】(1) .;. .
(2).
【解析】分析:(1)由題意可得,即,解出即可得,進(jìn)而得到;
(2)利用錯(cuò)位相減法與等比數(shù)列的前n項(xiàng)和公式即可得出.
詳解:(1)由題意知等差數(shù)列中,且、、成等比,
,
即,又,解得
所以數(shù)列的通項(xiàng)公式為
.
再由題意得等比數(shù)列中,,,
設(shè)等比數(shù)列公比為,則,
數(shù)列的通項(xiàng)公式為.
()
(2)由(1)得,,,,
設(shè)數(shù)列的前項(xiàng)的和為,
.
..........① ..........②
①-②得
所以的值為.
(2)解法2:由(1)得,,,,
設(shè),數(shù)列的前項(xiàng)的和為,則
..........①
則..........②
①-②得
,則
故
(2)解法3:由(1)得,,,,
.
設(shè)數(shù)列的前項(xiàng)的和為,
所以的值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在處有極值,求的值;
(2)若對(duì)于任意的在上單調(diào)遞增,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1所示,在邊長(zhǎng)為12的正方形AA'A1'A1中,BB1∥CC1∥AA1,且AB=3,BC=4,AA1'分別交BB1,CC1于點(diǎn)P,Q,將該正方形沿BB1、CC1折疊,使得A'A1'與AA1重合,構(gòu)成如圖2所示的三棱柱ABC﹣A1B1C1.
(1)求三棱錐P﹣ABC與三棱錐Q﹣PAC的體積之和;
(2)求直線AQ與平面BCC1B1所成角的正弦值;
(3)求三棱錐Q﹣ABC的外接球半徑r.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“”是“對(duì)任意的正數(shù), ”的( )
A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件
【答案】A
【解析】分析:根據(jù)基本不等式,我們可以判斷出“”?“對(duì)任意的正數(shù)x,2x+≥1”與“對(duì)任意的正數(shù)x,2x+≥1”?“a=
”真假,進(jìn)而根據(jù)充要條件的定義,即可得到結(jié)論.
解答:解:當(dāng)“a=”時(shí),由基本不等式可得:
“對(duì)任意的正數(shù)x,2x+≥1”一定成立,
即“a=”?“對(duì)任意的正數(shù)x,2x+≥1”為真命題;
而“對(duì)任意的正數(shù)x,2x+≥1的”時(shí),可得“a≥”
即“對(duì)任意的正數(shù)x,2x+≥1”?“a=”為假命題;
故“a=”是“對(duì)任意的正數(shù)x,2x+≥1的”充分不必要條件
故選A
【題型】單選題
【結(jié)束】
9
【題目】如圖是一幾何體的平面展開(kāi)圖,其中為正方形, , 分別為, 的中點(diǎn),在此幾何體中,給出下面四個(gè)結(jié)論:①直線與直線異面;②直線與直線異面;③直線平面;④平面平面.
其中一定正確的選項(xiàng)是( )
A. ①③ B. ②③ C. ②③④ D. ①③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一臺(tái)風(fēng)中心在港口南偏東方向上,距離港口千米處的海面上形成,并以每小時(shí)千米的速度向正北方向移動(dòng),距臺(tái)風(fēng)中心千米以?xún)?nèi)的范圍將受到臺(tái)風(fēng)的影響,則港口受到臺(tái)風(fēng)影響的時(shí)間為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列和等比數(shù)列滿(mǎn)足, , .
(1)求的通項(xiàng)公式;
(2)求和: .
【答案】(1);(2).
【解析】試題分析:(1)根據(jù)等差數(shù)列的, ,列出關(guān)于首項(xiàng)、公差的方程組,解方程組可得與的值,從而可得數(shù)列的通項(xiàng)公式;(2)利用已知條件根據(jù)題意列出關(guān)于首項(xiàng) ,公比 的方程組,解得、的值,求出數(shù)列的通項(xiàng)公式,然后利用等比數(shù)列求和公式求解即可.
試題解析:(1)設(shè)等差數(shù)列{an}的公差為d. 因?yàn)?/span>a2+a4=10,所以2a1+4d=10.解得d=2.
所以an=2n1.
(2)設(shè)等比數(shù)列的公比為q. 因?yàn)?/span>b2b4=a5,所以b1qb1q3=9.
解得q2=3.所以.
從而.
【題型】解答題
【結(jié)束】
18
【題目】已知命題:實(shí)數(shù)滿(mǎn)足,其中;命題:方程表示雙曲線.
(1)若,且為真,求實(shí)數(shù)的取值范圍;
(2)若是的充分不必要條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,a,b,c分別為角A,B,C的對(duì)邊.若acosB=3,bcosA=l,且A﹣B=
(1)求邊c的長(zhǎng);
(2)求角B的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com