【題目】已知函數(shù)和同時(shí)滿(mǎn)足以下兩個(gè)條件:
(1)對(duì)于任意實(shí)數(shù),都有或;
(2)總存在,使成立.
則實(shí)數(shù)的取值范圍是 __________.
【答案】
【解析】
由于g(x)=≥0時(shí),x≥3,根據(jù)題意有f(x)=m(x﹣m)(x+2m+3)<0在x≥3時(shí)成立;由于x∈(﹣∞,﹣1),f(x)g(x)<0,而g(x)=3x﹣3<0,則f(x)=m(x﹣m)(x+2m+3)>0在x∈(﹣∞,﹣1)時(shí)成立.由此結(jié)合二次函數(shù)的性質(zhì)可求出結(jié)果.
對(duì)于①∵g(x)=,當(dāng)x<3時(shí),g(x)<0,
又∵①x∈R,f(x)<0或g(x)<0
∴f(x)=m(x﹣m)(x+2m+3)<0在x≥3時(shí)恒成立
則由二次函數(shù)的性質(zhì)可知開(kāi)口只能向下,且二次函數(shù)與x軸交點(diǎn)都在(3,0)的左面,
即 可得﹣3<m<0
又∵②x∈(﹣∞,﹣1),f(x)g(x)<0
∴此時(shí)g(x)=<0恒成立
∴f(x)=m(x﹣m)(x+m+2)>0在x∈(﹣∞,﹣1)有成立的可能,
則只要﹣1比x1,x2中的較小的根大即可,
(i)當(dāng)﹣1<m<0時(shí),較小的根為﹣2m﹣3,f(x)=m(x﹣m)(x+m+2)>0在x∈(﹣∞,﹣1)有成立的可能,
(ii)當(dāng)m=﹣1時(shí),兩個(gè)根同為﹣1,f(x)<0在區(qū)間內(nèi)恒成立,故不滿(mǎn)足題意。
(iii)當(dāng)﹣3<m<﹣1時(shí),較小的根為m,f(x)=m(x﹣m)(x+m+2)>0在x∈(﹣∞,﹣1)有成立的可能,
綜上可得①②成立時(shí)﹣3<m<﹣1或-1<m<0.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四棱錐的底面為直角梯形, , ,且, .
(1)求證:平面平面;
(2)設(shè),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)對(duì)一切實(shí)數(shù)都有 成立,且.
(1)求的值;
(2)求的解析式;
(3)已知,設(shè):當(dāng)時(shí),不等式 恒成立;Q:當(dāng)時(shí),是單調(diào)函數(shù)。如果滿(mǎn)足成立的的集合記為,滿(mǎn)足Q成立的的集合記為,求A∩(CRB)(為全集).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四棱錐P﹣ABCD的底面ABCD為菱形,且∠ABC=60°,
AB=PC=2,PA=PB= .
(1)求證:平面PAB⊥平面ABCD;
(2)設(shè)H是PB上的動(dòng)點(diǎn),求CH與平面PAB所成最大角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】要制作一個(gè)容積為8m3 , 高為2m的無(wú)蓋長(zhǎng)方體容器,若容器的底面造價(jià)是每平方米200元,側(cè)面造型是每平方米100元,則該容器的最低總造價(jià)為( )
A.1200元
B.2400元
C.3600元
D.3800元
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=.
(1)判斷函數(shù)f(x)的奇偶性;
(2)判斷并用定義證明函數(shù)f(x)在其定義域上的單調(diào)性.
(3)若對(duì)任意的t1,不等式f()+f()<0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)中與f(x)=x是同一函數(shù)的有( 。
①y=②y=③y=④y=⑤f(t)=t⑥g(x)=x
A. 1 個(gè) B. 2 個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等差數(shù)列中, , ,其前項(xiàng)和為.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列滿(mǎn)足,其前項(xiàng)和為為,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市“招手即!惫财(chē)的票價(jià)按下列規(guī)則制定:
5公里以?xún)?nèi)(含5公里),票價(jià)2元;
5公里以上,每增加5公里,票價(jià)增加1元(不足5公里的按5公里計(jì)算).如果某條線(xiàn)路的總里程為20公里,請(qǐng)根據(jù)題意.
(1)寫(xiě)出票價(jià)與里程之間的函數(shù)解析式;
(2)根據(jù)(1)寫(xiě)出的函數(shù)解析式試畫(huà)出該函數(shù)的圖象.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com