已知雙曲線的右焦點是F, 過點F且傾角為600的直線與雙曲線的右支有且只有一個交點,則此雙曲線的離心率的范圍是(  )
A.B.(1,2)C.D.
C

試題分析:若過點F且傾斜角為60°的直線與雙曲線的右支有且只有一個交點,則該直線的斜率的絕對值小于等于漸近線的斜率.根據(jù)這個結論可以求出雙曲線離心率的取值范圍.
因為雙曲線的右焦點是F, 若過點F且傾斜角為60°的直線與雙曲線的右支有且只有一個交點,則該直線的斜率的絕對值小于等于漸近線的斜率,故選C.
點評:解題時要注意挖掘隱含條件,根據(jù)直線的斜率與雙曲線的漸近線斜率的關系來分析,從而得到雙曲線的離心率的取值范圍,屬于中檔題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

過雙曲線的左焦點作斜率為1的直線,該直線與雙曲線的兩條漸近線的交點分別為A、B,若,則雙曲線的漸近線方程為(  )
A.                 B.
C.                D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知曲線C:與直線L:僅有一個公共點,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點的坐標分別是,直線相交于點,且直線與直線的斜率之差是,則點的軌跡方程是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,橢圓的中心在坐標原點0,頂點分別是A1, A2, B1, B2,焦點分別為F1 ,F2,延長B1F2 與A2B2交于P點,若為鈍角,則此橢圓的離心率的取值范圍為
A.(0,B.(,1)
C.(0,D.(,1)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

求下列各曲線的標準方程
(Ⅰ)實軸長為12,離心率為,焦點在x軸上的橢圓;
(Ⅱ)拋物線的焦點是雙曲線的左頂點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知,O為坐標原點,動點E滿足:

(Ⅰ) 求點E的軌跡C的方程;
(Ⅱ)過曲線C上的動點P向圓O:引兩條切線PA、PB,切點分別為A、B,直線AB與x軸、y軸分別交于M、N兩點,求ΔMON面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

焦點在軸上,虛軸長為8,焦距為10的雙曲線的標準方程是     ;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

拋物線C:被直線l:截得的弦長為       

查看答案和解析>>

同步練習冊答案