為得到函數(shù)y=cos2x的圖象,只需將函數(shù)y=
sin2x
2
的圖象按照向量
a
平移,則
a
可以為( 。
A、(-
π
4
,
1
2
B、(-
π
2
1
2
C、(-
π
2
,1)
D、(
π
4
,
1
2
考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:利用二倍角的余弦與誘導(dǎo)公式,可知y=cos2x=
1
2
cos2x+
1
2
,y=
sin2x
2
=
cos(2x-
π
2
)
2
,比較即可得到答案.
解答: 解:y=cos2x=
cos2x+1
2
=
1
2
cos2x+
1
2
,
y=
sin2x
2
=
cos(2x-
π
2
)
2
,
為得到函數(shù)y=cos2x的圖象,只需將函數(shù)y=
sin2x
2
的圖象向左平移
π
4
個(gè)單位,再向上平移
1
2
個(gè)單位即可,
所以
a
=(-
π
4
1
2

故選:A.
點(diǎn)評:本題考查函數(shù)y=Asin(ωx+φ)的圖象變換,考查二倍角的余弦與誘導(dǎo)公式的應(yīng)用,考查平面向量的坐標(biāo)表示,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

二項(xiàng)式(x2+
2
x
6的展開式中不含x3項(xiàng)的系數(shù)之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的漸近線方程為x±2y=0,則該雙曲線的離心率為( 。
A、
5
2
B、
5
C、
3
2
D、
5
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若△ABC為銳角三角形,則下列不等式中一定能成立的是( 。
A、logcosC
cosA
cosB
>0
B、logcosC
cosA
sinB
>0
C、logsinC
sinA
cosB
>0
D、logsinC
sinA
sinB
>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的內(nèi)角A,B,C滿足sin2A+sin(A-B+C)=sin(C-A-B)+
1
2
,面積S滿足1≤S≤2,記a,b,c分別為A,B,C所對的邊,在下列不等式一定成立的是( 。
A、bc(b+c)>8
B、ab(a+b)>16
2
C、6≤abc≤12
D、12≤abc≤24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x≥0
y≥x
4x+3y≤12
,則
x+2y+3
x+1
的取值范圍是( 。
A、[3,11]
B、[3,10]
C、[2,6]
D、[1,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=
2+i
1-2i
(i為虛數(shù)單位)的虛部是( 。
A、iB、1C、-1D、-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)i是虛數(shù)單位,復(fù)數(shù)z1=2-i,z2=1+3i,則z1•z2=( 。
A、-1-5iB、-1+5i
C、5-5iD、5+5i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2sinx,sinx-cosx),
b
=(cosx,
3
(cosx+sinx)),函數(shù)f(x)=
a
b
+1
(1)當(dāng)x∈(
π
4
,
π
2
)時(shí),求f(x)的值域;并求其對稱中心.
(2)設(shè)△ABC的內(nèi)角A,B,C所對的邊長分別為a,b,c,若將f(x)向左平移
π
4
個(gè)單位,且b=5,f(
B
2
)=3,求△ABC面積最大值.

查看答案和解析>>

同步練習(xí)冊答案