已知函數(shù)
有且僅有兩個不同的零點
,
,則( 。
試題分析:函數(shù)求導(dǎo),得:
,得兩個極值點:
因為函數(shù)f(x)過定點(0,-2),有且僅有兩個不同的零點,所以,可畫出函數(shù)圖象如下圖:因此,可知,
,只有B符合.
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)f(x)=
x
-ax+(a-1)
,
。
(1)討論函數(shù)
的單調(diào)性;(2)若
,設(shè)
,
(。┣笞Cg(x)為單調(diào)遞增函數(shù);
(ⅱ)求證對任意x
,x
,x
x
,有
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)
,函數(shù)
(1)當
時,求曲線
在
處的切線方程;
(2)當
時,求函數(shù)
的單調(diào)區(qū)間;
(3)當
時,求函數(shù)
的最小值
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)函數(shù)
(其中
).
(1) 當
時,求函數(shù)
的單調(diào)區(qū)間和極值;
(2) 當
時,函數(shù)
在
上有且只有一個零點.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
在
處取得極值.
(1)求實數(shù)
的值;
(2)若關(guān)于
的方程
在
上恰有兩個不相等的實數(shù)根,求實數(shù)
的取值范圍;
(3)若
,使
成立,求實數(shù)
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
。
(Ⅰ)若
在
是增函數(shù),求b的取值范圍;
(Ⅱ)若
在
時取得極值,且
時,
恒成立,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
(
是自然對數(shù)的底數(shù)).
(1)若曲線
在
處的切線也是拋物線
的切線,求
的值;
(2)當
時,是否存在
,使曲線
在點
處的切線斜率與
在
上的最小值相等?若存在,求符合條件的
的個數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
是實數(shù),函數(shù)
,
和
,分別是
的導(dǎo)函數(shù),若
在區(qū)間
上恒成立,則稱
和
在區(qū)間
上單調(diào)性一致.
(Ⅰ)設(shè)
,若函數(shù)
和
在區(qū)間
上單調(diào)性一致,求實數(shù)
的取值范圍;
(Ⅱ)設(shè)
且
,若函數(shù)
和
在以
為端點的開區(qū)間上單調(diào)性一致,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(I)證明當
(II)若不等式
取值范圍.
查看答案和解析>>