若f(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),且x∈(a,b)時,f′(x)>0,又f(a)<0,則( 。
A、f(x)在[a,b]上單調(diào)遞增,且f(b)>0
B、f(x)在[a,b]上單調(diào)遞增,且f(b)<0
C、f(x)在[a,b]上單調(diào)遞減,且f(b)<0
D、f(x)在[a,b]上單調(diào)遞增,但f(b)的符號無法判斷
考點:函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,判定出選項.
解答: 解:∵f(x)在[a,b]上連續(xù),且x∈(a,b)時,f′(x)>0,
∴f(x)在[a,b]上單調(diào)遞增,
∴f(a)<f(b),
∵f(a)<0,
但f(b)的符號無法判斷
故選D.
點評:本題考查的知識點是利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬于一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)如圖所示的偽代碼,若輸出y的值為3,則輸入x的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,函數(shù)y=2sin(πx+φ),x∈R(其中0≤φ≤
π
2
)的圖象與y軸交于點(0,1).設(shè)P是圖象上的最高點,M、N是圖象與x軸的交點,則PM與PN的夾角的余弦值為( 。
A、
3
5
B、-
3
5
C、
15
17
D、-
15
17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在棱長為1的正方體ABCD-A1B1C1D1中,動點P在面對角線BC1上,則A1P+PA的最小值為( 。
A、
6
B、
3+
6
C、1+
2
D、
2
+
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一只艘船以均勻的速度由A點向正北方向航行,如圖,開始航行時,從A點觀測燈塔C的方位角(從正北方向順時針轉(zhuǎn)到目標(biāo)方向的水平角)為45°,行駛60海里后,船在B點觀測燈塔C的方位角為75°,則A到C的距離是(  )海里.
A、30(
6
+
2
B、30(
6
-
2
C、30(
6
-
3
D、30(
6
+
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

工人師傅想對如圖1的直角鐵皮,用一條直線m將其分成面積相等的兩部分.圖2是甲、乙、丙、丁四位同學(xué)給出的做法,其中做法正確的學(xué)生數(shù)是(  )
A、4個B、3個C、2個D、1個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an},{bn}的前n項和分別為Sn,Tn,若
Sn
Tn
=
2n+4
3n+1
,則an=bn時n=( 。
A、無解B、6C、2D、無數(shù)多個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=8x與雙曲線
x2
a2
-
y2
3
=1的一個焦點重合,則該雙曲線的離心率為( 。
A、2
B、
2
3
3
C、
4
7
7
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面幾個推理過程是演繹推理的是( 。
A、某同學(xué)第一次數(shù)學(xué)考試65分,第二次考試68分,由此預(yù)測其第三次考試71分
B、根據(jù)圓的面積為S=πr2,推測球的體積為V=πr3
C、在數(shù)列{an}中,根據(jù)a1=1,an+1=
an
an+1
,n∈N*,計算出a2,a3,a4的值,然后猜想{an}的通項公式
D、因為平行四邊形的對角線互相平分,而菱形是平行四邊形,所以菱形的對角線互相平分

查看答案和解析>>

同步練習(xí)冊答案