甲有一個(gè)箱子,里面放有x個(gè)紅球,y個(gè)白球(x,y≥0,且x+y=4);乙有一個(gè)箱子,里面放有2個(gè)紅球,1個(gè)白球,1個(gè)黃球.現(xiàn)在甲從箱子里任取2個(gè)球,乙從箱子里任取1個(gè)球.若取出的3個(gè)球顏色全不相同,則甲獲勝.

(1)試問甲如何安排箱子里兩種顏色球的個(gè)數(shù),才能使自己獲勝的概率最大?

(2)在(1)的條件下,求取出的3個(gè)球中紅球個(gè)數(shù)的期望.

 

【答案】

(1)甲應(yīng)在箱子里放2個(gè)紅球2個(gè)白球才能使自己獲勝的概率最大

(2)1.5

【解析】

試題分析:(1)要想使取出的3個(gè)球顏色全不相同,則乙必須取出黃球,甲取出的兩個(gè)球?yàn)橐粋(gè)紅球一個(gè)白球,乙取出黃球的概率是,甲取出的兩個(gè)球?yàn)橐粋(gè)紅球一個(gè)白球的概率是

,所以取出的3個(gè)球顏色全不相同的概率是,即甲獲勝的概率為,由,且,所以,當(dāng)時(shí)取等號(hào),即甲應(yīng)在箱子里放2個(gè)紅球2個(gè)白球才能使自己獲勝的概率最大.

(2)設(shè)取出的3個(gè)球中紅球的個(gè)數(shù)為ξ,則ξ的取值為0,1,2,3.

,

,

所以取出的3個(gè)球中紅球個(gè)數(shù)的期望:

考點(diǎn):本小題主要考查互斥事件的概率的求法和隨機(jī)變量的分布列的數(shù)學(xué)期望的求法以及排列、組合公式的應(yīng)用.

點(diǎn)評(píng):隨機(jī)事件的類型比較多,解決此類問題時(shí)要分清事件類型,同時(shí)要搞清楚每種事件包含幾種情況,然后結(jié)合排列組合知識(shí)進(jìn)行求解.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

甲有一個(gè)箱子,里面放有x個(gè)紅球,y個(gè)白球(x,y≥0,且x+y=4);乙有一個(gè)箱子,里面放有2個(gè)紅球,1個(gè)白球,1個(gè)黃球.現(xiàn)在甲從箱子任取2個(gè)球,乙從箱子里在取1個(gè)球,若取出的3個(gè)球顏色全不相同,則甲獲勝.
(1)試問甲如何安排箱子里兩種顏色的個(gè)數(shù),才能使自己獲勝的概率最大?
(2)在(1)的條件下,求取出的3個(gè)球中紅球個(gè)數(shù)的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年平遙中學(xué)理)(12分) 甲有一個(gè)箱子,里面放有x個(gè)紅球,y個(gè)白球(x,y≥0,且x+y=4);

乙有一個(gè)箱子,里面放有2個(gè)紅球,1個(gè)白球,1個(gè)黃球.現(xiàn)在甲從自己的箱子里任取2個(gè)球,乙從自己的箱子里在取1個(gè)球,若取出的3個(gè)球顏色全不相同,則甲獲勝.

   (1)試問甲如何安排箱子里兩種顏色的個(gè)數(shù),才能使自己獲勝的概率最大?

   (2)在(1)的條件下,求取出的3個(gè)球中紅球個(gè)數(shù)ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年平遙中學(xué)文)(12分) 甲有一個(gè)箱子,里面放有x個(gè)紅球,y個(gè)白球();乙有一個(gè)箱子,里面放有2個(gè)紅球,1個(gè)白球,1個(gè)黃球.現(xiàn)在甲從箱子任取2個(gè)球,乙從箱子里在取1個(gè)球,若取出的3個(gè)球顏色全不相同,則甲獲勝.

   (1)試問甲如何安排箱子里兩種顏色的個(gè)數(shù),才能使自己獲勝的概率最大?

(2)在(1)的條件下,求取出的3個(gè)球中有2個(gè)紅球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年黑龍江省高二下學(xué)期期中考試?yán)頂?shù) 題型:解答題

 

甲有一個(gè)箱子,里面放有x個(gè)紅球,y個(gè)白球(x,y≥0,且x+y=4);乙有一個(gè)箱子,里面放有2個(gè)紅球,1個(gè)白球,1個(gè)黃球.現(xiàn)在甲從箱子里任取2個(gè)球,乙從箱子里任取1個(gè)球.若取出的3個(gè)球顏色全不相同,則甲獲勝.

(1)試問甲如何安排箱子里兩種顏色球的個(gè)數(shù),才能使自己獲勝的概率最大?

(2)在(1)的條件下,求取出的3個(gè)球中紅球個(gè)數(shù)的期望.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案