設(shè)An為數(shù)列{an}的前n項(xiàng)和,An= (an-1),數(shù)列{bn}的通項(xiàng)公式為bn=4n+3;
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)把數(shù)列{an}與{bn}的公共項(xiàng)按從小到大的順序排成一個(gè)新的數(shù)列,證明:數(shù)列{dn}的通項(xiàng)公式為dn=32n+1;
(3)設(shè)數(shù)列{dn}的第n項(xiàng)是數(shù)列{bn}中的第r項(xiàng),Br為數(shù)列{bn}的前r項(xiàng)的和;Dn為數(shù)列{dn}的前n項(xiàng)和,Tn=Br-Dn,求
(1) an=3n (2)證明略 (3)
(1)由An=(an-1),可知An+1=(an+1-1),
∴an+1-an= (an+1-an),即=3,而a1=A1= (a1-1),得a1=3,所以數(shù)列是以3為首項(xiàng),公比為3的等比數(shù)列,數(shù)列{an}的通項(xiàng)公式an=3n.
(2)∵32n+1=3·32n=3·(4-1)2n
=3·[42n+C·42n-1(-1)+…+C·4·(-1)+(-1)2n]=4n+3,
∴32n+1∈{bn}.
而數(shù)32n=(4-1)2n
=42n+C·42n-1·(-1)+…+C·4·(-1)+(-1)2n=(4k+1),
∴32n{bn},而數(shù)列{an}={a2n+1}∪{a2n},∴dn=32n+1.
(3)由32n+1=4·r+3,可知r=,
∴Br=,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省常州市武進(jìn)區(qū)橫山橋高級中學(xué)高三(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江蘇省泰州市興化中學(xué)高三調(diào)研數(shù)學(xué)試卷(三)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2007年北京市崇文區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com