【題目】已知點(diǎn)在曲線上,過原點(diǎn),且與軸的另一個(gè)交點(diǎn)為,若線段,和曲線上分別存在點(diǎn)、點(diǎn)和點(diǎn),使得四邊形(點(diǎn) , 順時(shí)針排列)是正方形,則稱點(diǎn)為曲線完美點(diǎn).那么下列結(jié)論中正確的是( ).

A. 曲線上不存在完美點(diǎn)

B. 曲線上只存在一個(gè)完美點(diǎn),其橫坐標(biāo)大于

C. 曲線上只存在一個(gè)完美點(diǎn),其橫坐標(biāo)大于且小于

D. 曲線上存在兩個(gè)完美點(diǎn),其橫坐標(biāo)均大于

【答案】B

【解析】如圖,如果點(diǎn)完美點(diǎn)則有,以為圓心, 為半徑作圓(如圖中虛線圓)交軸于 (可重合),交拋物線于點(diǎn), 當(dāng)且僅當(dāng)時(shí),在圓上總存在點(diǎn),使得的角平分線,即,利用余弦定理可求得此時(shí),即四邊形是正方形,即點(diǎn)完美點(diǎn),如圖,結(jié)合圖象可知,點(diǎn)一定是上方的交點(diǎn),否則在拋物線上不存在使得, 也一定是上方的點(diǎn),否則, , , 不是順時(shí)針,再考慮當(dāng)點(diǎn)橫坐標(biāo)越來越大時(shí), 的變化情況:

設(shè),當(dāng)時(shí), ,此時(shí)圓與軸相離,此時(shí)點(diǎn)不是完美點(diǎn),故只需要考慮,當(dāng)增加時(shí), 越來越小,且趨近于,而當(dāng)時(shí), ;故曲線上存在唯一一個(gè)完美點(diǎn)其橫坐標(biāo)大于.故選

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是雙曲線 (a>0,b>0,xy≠0)上的動(dòng)點(diǎn),F(xiàn)1,F(xiàn)2是雙曲線的焦點(diǎn),M是∠F1PF2的平分線上一點(diǎn),且.某同學(xué)用以下方法研究|OM|:延長(zhǎng)F2M交PF1于點(diǎn)N,可知△PNF2為等腰三角形,且M為F2N的中點(diǎn),得|OM|=|NF1|=…=a。類似地:P是橢圓 (a>b>0,xy≠0)上的動(dòng)點(diǎn),F(xiàn)1,F(xiàn)2是橢圓的焦點(diǎn),M是∠F1PF2的平分線上一點(diǎn),且,則|OM|的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐,底面為正方形,且底面的平面與側(cè)面的交線為,且滿足表示的面積.

(1)證明: 平面;

(2)當(dāng)時(shí),二面角的余弦值為,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在底面為矩形的四棱錐中, .

(1)證明:平面平面;

(2)若異面直線所成角為, , ,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】編號(hào)分別為16名籃球運(yùn)動(dòng)員在某次訓(xùn)練比賽中的得分記錄如下:

運(yùn)動(dòng)員編號(hào)

得分

15

35

21

28

25

36

18

34

運(yùn)動(dòng)員編號(hào)

得分

17

26

25

33

22

12

31

38

(1)將得分在對(duì)應(yīng)區(qū)間內(nèi)的人數(shù)填入相應(yīng)的空格:

區(qū)間

[10,20

[20,30)

[30,40]

人數(shù)

(2)從得分在區(qū)間[20,30)內(nèi)的運(yùn)動(dòng)員中隨機(jī)抽取2.

()用運(yùn)動(dòng)員編號(hào)列出所有可能的抽取結(jié)果;

()求這2人得分之和大于50的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,短軸長(zhǎng)為,且兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)恰為一個(gè)正方形的頂點(diǎn),過右焦點(diǎn)軸不垂直的直線交橢圓于, 兩點(diǎn).

Ⅰ)求橢圓的方程.

Ⅱ)當(dāng)直線的斜率為時(shí),求的面積.

Ⅲ)在線段上是否存在點(diǎn),使得經(jīng), 為領(lǐng)邊的平行四邊形是菱形?若存在,求出的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著共享單車的成功運(yùn)營(yíng),更多的共享產(chǎn)品逐步走入大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮.某公司隨機(jī)抽取1000人對(duì)共享產(chǎn)品是否對(duì)日常生活有益進(jìn)行了問卷調(diào)查,并對(duì)參與調(diào)查的1000人中的性別以及意見進(jìn)行了分類,得到的數(shù)據(jù)如下表所示:

總計(jì)

認(rèn)為共享產(chǎn)品對(duì)生活有益

400

300

700

認(rèn)為共享產(chǎn)品對(duì)生活無益

100

200

300

總計(jì)

500

500

1000

(1)根據(jù)表中的數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為共享產(chǎn)品的態(tài)度與性別有關(guān)系?

(2)為了答謝參與問卷調(diào)查的人員,該公司對(duì)參與本次問卷調(diào)查的人員隨機(jī)發(fā)放1張超市的購(gòu)物券,購(gòu)物券金額以及發(fā)放的概率如下:

購(gòu)物券金額

20元

50元

概率

現(xiàn)有甲、乙兩人領(lǐng)取了購(gòu)物券,記兩人領(lǐng)取的購(gòu)物券的總金額為,求的分布列和數(shù)學(xué)期望.

參考公式:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市小型機(jī)動(dòng)車駕照科二考試中共有5項(xiàng)考察項(xiàng)目,分別記作,,⑤.

1)某教練將所帶10名學(xué)員科二模擬考試成績(jī)進(jìn)行統(tǒng)計(jì)(如圖1所示),并打算從恰有2項(xiàng)成績(jī)不合格的學(xué)員中任意抽出2人進(jìn)行補(bǔ)測(cè)(只測(cè)不合格的項(xiàng)目),求補(bǔ)測(cè)項(xiàng)目種類不超過3項(xiàng)的概率;

2)如圖2,某次模擬演練中,教練要求學(xué)員甲倒車并轉(zhuǎn)向90°,在汽車邊緣不壓射線AC與射線BD的前提下,將汽車駛?cè)胫付ǖ耐\囄?/span>. 根據(jù)經(jīng)驗(yàn),學(xué)員甲轉(zhuǎn)向90°后可使車尾邊緣完全落在線段CD,且位于CD內(nèi)各處的機(jī)會(huì)相等.CA="BD=0.3m," AB="2.4m." 汽車寬度為1.8m, 求學(xué)員甲能按教練要求完成任務(wù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12)

已知函數(shù),.

)求的定義域;

)判斷的奇偶性并予以證明;

)當(dāng)時(shí),求使的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案