【題目】如圖,已知焦點(diǎn)在x軸上的橢圓有一個(gè)內(nèi)含圓x2y2=,該圓的垂直于x軸的切線交橢圓于點(diǎn)M,N,且 (O為原點(diǎn)).

1)求b的值;

2)設(shè)內(nèi)含圓的任意切線l交橢圓于點(diǎn)A、B.求證:,并求|AB|的取值范圍.

【答案】12;(2)證明見解析,.

【解析】

1)設(shè)的坐標(biāo),利用,求得,得到點(diǎn)代入橢圓的方程,即可求解;

2)分類討論,當(dāng)軸時(shí),由(1)知;當(dāng)不與軸垂直時(shí),設(shè)的方程為,代入橢圓的方程,利用韋達(dá)定理證得,再利用弦長公式,結(jié)合換元法和二次函數(shù)的性質(zhì),即可求解.

1)由圓的垂直于x軸的切線交橢圓于點(diǎn)MN,,

可得直線的方程為,

設(shè)

,即,解得,

可得點(diǎn)在橢圓上,代入橢圓方程

可得.

2)當(dāng)軸時(shí),由(1)知,

當(dāng)不與軸垂直時(shí),設(shè)的方程為,即,

則原點(diǎn)到直線的距離,可得,整理得

把直線代入橢圓的方程,

整理得

,

設(shè),則,

所以,即,

即橢圓內(nèi)含圓的任意切線交橢圓時(shí),總有,

當(dāng)軸時(shí),可得;

當(dāng)不與軸垂直時(shí),可得,

設(shè),則,

,

所以當(dāng),即時(shí),的取最大值,

當(dāng),即時(shí),的取最小值,

綜上可得,的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)德智體美勞的教育方針,唐徠回中高一年級(jí)舉行了由全體學(xué)生參加的一分鐘跳繩比賽,計(jì)分規(guī)則如下:

每分鐘跳繩個(gè)數(shù)

185以上

得分

16

17

18

19

20

年級(jí)組為了了解學(xué)生的體質(zhì),隨機(jī)抽取了100名學(xué)生,統(tǒng)計(jì)了他的跳繩個(gè)數(shù),并繪制了如下樣本頻率直方圖:

1)現(xiàn)從這100名學(xué)生中,任意抽取2人,求兩人得分之和小于35分的概率(結(jié)果用最簡分?jǐn)?shù)表示);

2)若該校高二年級(jí)2000名學(xué)生,所有學(xué)生的一分鐘跳繩個(gè)數(shù)近似服從正態(tài)分布,其中為樣本平均數(shù)的估計(jì)值(同一組中數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間的中點(diǎn)值為代表).利用所得到的正態(tài)分布模型解決以下問題:

①估計(jì)每分鐘跳繩164個(gè)以上的人數(shù)(四舍五入到整數(shù))

②若在全年級(jí)所有學(xué)生中隨機(jī)抽取3人,記每分鐘跳繩在179個(gè)以上的人數(shù)為,求的分布列和數(shù)學(xué)期望與方差.

(若隨機(jī)變量服從正態(tài)分布,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某媒體為調(diào)查喜愛娛樂節(jié)目A是否與觀眾性別有關(guān),隨機(jī)抽取了30名男性和30名女性觀眾,抽查結(jié)果用等高條形圖表示如圖:

根據(jù)該等高條形圖,完成下列2×2列聯(lián)表,并用獨(dú)立性檢驗(yàn)的方法分析,能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為喜歡娛樂節(jié)目A與觀眾性別有關(guān)?

喜歡節(jié)目A

不喜歡節(jié)目A

總計(jì)

男性觀眾

女性觀眾

總計(jì)

60

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某地區(qū)2000年至2016年環(huán)境基礎(chǔ)設(shè)施投資額(單位:億元)的折線圖.則下列結(jié)論中表述不正確的是( )

A. 從2000年至2016年,該地區(qū)環(huán)境基礎(chǔ)設(shè)施投資額逐年增加;

B. 2011年該地區(qū)環(huán)境基礎(chǔ)設(shè)施的投資額比2000年至2004年的投資總額還多;

C. 2012年該地區(qū)基礎(chǔ)設(shè)施的投資額比2004年的投資額翻了兩番 ;

D. 為了預(yù)測該地區(qū)2019年的環(huán)境基礎(chǔ)設(shè)施投資額,根據(jù)2010年至2016年的數(shù)據(jù)(時(shí)間變量t的值依次為)建立了投資額y與時(shí)間變量t的線性回歸模型,根據(jù)該模型預(yù)測該地區(qū)2019的環(huán)境基礎(chǔ)設(shè)施投資額為256.5億元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的右頂點(diǎn)為A,下頂點(diǎn)為B,過A、OBO為坐標(biāo)原點(diǎn))三點(diǎn)的圓的圓心坐標(biāo)為

(1)求橢圓的方程;

(2)已知點(diǎn)Mx軸正半軸上,過點(diǎn)BBM的垂線與橢圓交于另一點(diǎn)N,若∠BMN=60°,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,平面,,,分別是的中點(diǎn).

(1)求證:;

(2)設(shè)為線段上的動(dòng)點(diǎn),若線段長的最小值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求函數(shù)在區(qū)間上的最值;

2)討論的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

1)討論函數(shù)在定義域內(nèi)的極值點(diǎn)的個(gè)數(shù);

2)若函數(shù)處取得極值,0,),恒成立,求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直四棱柱的底面是菱形,,,,,分別是,,的中點(diǎn).

1)證明:平面;

2)求二面角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案