圓錐的軸截面SAB是邊長(zhǎng)為2的等邊三角形,O為底面中心,M為SO的中點(diǎn),動(dòng)點(diǎn)P在圓錐底面內(nèi)(包括圓周).若AM⊥MP,則P點(diǎn)形成的軌跡的長(zhǎng)度為    
【答案】分析:建立空間直角坐標(biāo)系,寫(xiě)出點(diǎn)的坐標(biāo),設(shè)出動(dòng)點(diǎn)的坐標(biāo),利用向量的坐標(biāo)公式求出向量坐標(biāo),利用向量垂直的充要條件列出方程求出動(dòng)點(diǎn)P的軌跡方程,得到P的軌跡是底面圓的弦,利用勾股定理求出弦長(zhǎng).
解答:解:以AB所在直線為x軸,以O(shè)S為z軸,建立空間直角坐標(biāo)系,
則A(0,-1,0),B(0,1,0),,設(shè)P(x,y,0).于是有
由于AM⊥MP,
所以,
,此為P點(diǎn)形成的軌跡方程,
其在底面圓盤(pán)內(nèi)的長(zhǎng)度為
故答案為
點(diǎn)評(píng):本題考查通過(guò)建立坐標(biāo)系,將求軌跡問(wèn)題轉(zhuǎn)化為求軌跡方程、考查向量的數(shù)量積公式、向量垂直的充要條件、圓的弦長(zhǎng)的求法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓錐的軸截面SAB是邊長(zhǎng)為2的等邊三角形,O為底面中心,M為SO的中點(diǎn),動(dòng)點(diǎn)P在圓錐底面內(nèi)(包括圓周).若AM⊥MP,則P點(diǎn)形成的軌跡的長(zhǎng)度為( 。
A、
7
B、
7
2
C、3
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓錐的軸截面SAB是邊長(zhǎng)為2的等邊三角形,O為底面中心,M為SO的中點(diǎn),動(dòng)點(diǎn)P在圓錐底面內(nèi)(包括圓周).若AM⊥MP,則P點(diǎn)形成的軌跡的長(zhǎng)度為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓錐的軸截面SAB是邊長(zhǎng)為2的等邊三角形,O為底面中心,M為SO的中點(diǎn),動(dòng)點(diǎn)P在圓錐底面內(nèi)(包括圓周)。若AM⊥MP,則P點(diǎn)形成的軌跡的長(zhǎng)度為(     )

A.          B.        C.  3          D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓錐的軸截面SAB是邊長(zhǎng)為2的等邊三角形,O為底面中心,M為SO的中點(diǎn),動(dòng)點(diǎn)P在圓錐底面內(nèi)(包括圓周)。若AM⊥MP,則P點(diǎn)形成的軌跡的長(zhǎng)度為(     )

A.          B.        C.  3          D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

圓錐的軸截面SAB是邊長(zhǎng)為2的等邊三角形,O為底面中心,M為SO的中點(diǎn),動(dòng)點(diǎn)P在圓錐底面內(nèi)(包括圓周).若AM⊥MP,則P點(diǎn)形成的軌跡的長(zhǎng)度為(  )
A.
7
B.
7
2
C.3D.
3
2

查看答案和解析>>

同步練習(xí)冊(cè)答案