下列函數(shù)中,既是偶函數(shù),又在區(qū)間[-1,0]上是減函數(shù)的是(  )
A、y=cosx
B、y=x2
C、y=log2x
D、y=ex-e-x
考點:函數(shù)單調(diào)性的判斷與證明,函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:首先,根據(jù)所給的函數(shù)滿足的條件:偶函數(shù)和區(qū)間[-1,0]上減函數(shù),直接進行判斷即可.
解答: 解:對于選項A:
設(shè)y=f(x)=cosx,
∴f(-x)=cos(-x)=cosx=f(x),
∴y=f(x)為偶函數(shù),
又因為y=cosx在[-
π
2
,0]上為增函數(shù),
∴在區(qū)間[-1,0]上是增函數(shù),
∴A不符合題意;
對于選項B:
設(shè)y=f(x)=x2
∴f(-x)=(-x)2=x2=f(x),
∴y=f(x)為偶函數(shù),
∵y=f(x)=x2在(-∞,0]上為減函數(shù),
∴在區(qū)間[-1,0]上是減函數(shù),
∴B符合題意;
對于選項C:
∵該函數(shù)的定義域為(0,+∞),
它不關(guān)于原點對稱,
∴該函數(shù)為非奇非偶函數(shù);
∴C不符合題意;
對于選項D:
設(shè)y=f(x)=ex-e-x
∴f(-x)=e-x-ex=-f(x),
∴y=f(x)為奇函數(shù),
∴D不符合題意;
故選:B.
點評:本題重點考查基本初等函數(shù)的單調(diào)性和奇偶性,屬于基礎(chǔ)題,難度。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中:
①某中學(xué)高三(1)班有學(xué)生m人,現(xiàn)按座位號的編號采用系統(tǒng)抽樣的方法選取5名同學(xué)參加一項活動,已知座位號為5號、16號、27號、38號、49號的同學(xué)均被選出,則該班的學(xué)生人數(shù)m的取值范圍為[55,59];
②有一個容量為200的樣本,其頻率分布直方圖如圖所示,根據(jù)樣本的頻率分布直方圖估計,樣本數(shù)據(jù)落在區(qū)間[10,12)內(nèi)的頻數(shù)為20;
③已知圓C:x2+y2=12,直線l:4x+3y=25.圓C上任意一點A到直線l的距離小于2的概率為
1
6
;
④已知回歸直線y=bx+a的回歸系數(shù)b的估計值是1.23,
.
y
=5,
.
x
=4,則回歸直線方程是y=1.23x+0.08.
正確命題的序號為:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)f(x)=
2
sin2x+
6
cos2x的圖象向右平移
π
4
個單位,再把橫坐標(biāo)擴大到原來的2倍得到函數(shù)y=g(x)的圖象,下面結(jié)論正確的是(  )
A、函數(shù)y=g(x)在[0,
π
2
]上是單調(diào)遞減函數(shù)
B、函數(shù)y=g(x)圖象的一個對稱中心為(
π
2014
,0)
C、函數(shù)y=g(x+φ)為偶函數(shù)時,其中一個φ=-
π
3
D、函數(shù)y=g(x)圖象關(guān)于直線x=
4
對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在長為10cm的線段AB上任取一點C,現(xiàn)作一個矩形,鄰邊長分別等于線段AC、CB的長,則該矩形的面積大于24cm2的概率是( 。
A、
1
6
B、
1
5
C、
1
4
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A=(-1,2),集合B={x|-x2-2x+3>0},則A∪B=( 。
A、(-1,1)
B、(-3,2)
C、(-1,3)
D、(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖:若輸出結(jié)果在區(qū)間[-2,2]內(nèi),則輸入x的取值范圍是( 。
A、[-2,0]
B、[-3,-1]
C、[-2,1]
D、[-1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax和g(x)=bx是指數(shù)函數(shù),則“f(2)>g(2)”是“a>b”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c分別為角A、B、C所對的邊,且(2b+c)cosA+acosC=0
(1)求角A的大小:
(2)求2
3
cos2
C
2
-sin(
3
-B)的最大值,并求取得最大值時角B,C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,小島A的周圍3.8海里內(nèi)有暗礁.一艘漁船從B地出發(fā)由西向東航行,觀測到小島A在北偏東75°,繼續(xù)航行8海里到達C處,觀測到小島A在北偏東60°.若此船不改變航向繼續(xù)前進,有沒有觸礁的危險?

查看答案和解析>>

同步練習(xí)冊答案