精英家教網 > 高中數學 > 題目詳情

(本題12分)為了研究化肥對小麥產量的影響,某科學家將一片土地劃分成200個的小塊,并在100個小塊上施用新化肥,留下100個條件大體相當的小塊不施用新化肥.下表1和表2分別是施用新化肥和不施用新化肥的小麥產量頻數分布表(小麥產量單位:kg)
表1:施用新化肥小麥產量頻數分布表

小麥產量





頻數
10
35
40
10
5
表2:不施用新化肥小麥產量頻數分布表
小麥產量




頻數
15
50
30
5
(10)     完成下面頻率分布直方圖;

(2)統(tǒng)計方法中,同一組數據常用該組區(qū)間的中點值作為代表,據此估計施用化肥和不施用化肥的一小塊土地的小麥平均產量;
(3)完成下面2×2列聯表,并回答能否有99.5%的把握認為“施用新化肥和不施用新化肥的小麥產量有差異”
表3:
 
小麥產量小于20kg
小麥產量不小于20kg
合計
施用新化肥


 
不施用新化肥


 
合計
 
 

 
附:

0.050
0.010
0.005
0.001

3.841
6.635
7.879
10.828
 

(1)見解析; (2) 施用化肥的平均產量為21.5,不施用新化肥的平均產量為17.5; (3)列量表見解析,99.5%。

解析試題分析:
4分
(2)施用化肥的一小塊土地小麥平均產量為
5×0.1+15×0.35+25×0.4+35×0.1+45×0.05=21.5              ………6分
不施用新化肥的一小塊土地小麥平均產量為
5×0.15+15×0.5+25×0.3+35×0.05=17.5                     ………8分
(3)表3

 
小麥產量小于20kg
小麥產量不小于20kg
合計
施用新化肥


100
不施用新化肥


100
合計
110
90

       ………11分
由于,所以有99.5%的把握認為施用新化肥和不施用新化肥的小麥產量有差異                       ………12分
考點:頻率分布直方圖;列聯表;獨立性檢驗。
點評:在頻率分布直方圖中:小長方形的面積=組距×=頻率,各個長方形的面積之和等于1。屬于基礎題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

調查某桑場采桑員和輔助工桑毛蟲皮炎發(fā)病情況結果如下表:利用2×2列聯表的獨立性檢驗估計“患桑毛蟲皮炎病與采!笔欠裼嘘P?認為兩者有關系會犯錯誤的概率是多少?

 
采桑
不采桑
合計
患者人數
18
12
 
健康人數
5
78
 
合計
 
 
 

P(K2≥k)
0.050
0.010
0.001
k
3.841
6.635
10.828

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
某班50位學生期中考試數學成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:.

(1)求圖中x的值;
(2)從成績不低于80分的學生中按分層抽樣抽取4人,選其中2人為數學課代表,求這兩個人的數學成績不在同一分數段的概率。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
某高校在2013年的自主招生考試成績中隨機抽取40名學生的筆試成績,按成績共分成五組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示,同時規(guī)定成績在85分以上(含85分)的學生為“優(yōu)秀”,成績小于85分的學生為“良好”,且只有成績?yōu)椤皟?yōu)秀”的學生才能獲得面試資格.

(1)求出第4組的頻率;
(2)如果用分層抽樣的方法從“優(yōu)秀”和“良好” 的學生中選出5人,再從這5人中選2人,那么至少有一人是“優(yōu)秀”的概率是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題12分)一個質地均勻的正四面體的四個面上分別標示著數字1、2、3、4,一個質地均勻的骰子(正方體)的六個面上分別標示數字1、2、3、4、5、6,先后拋擲一次正四面體和骰子。
⑴列舉出全部基本事件;
⑵求被壓在底部的兩個數字之和小于5的概率;
⑶求正四面體上被壓住的數字不小于骰子上被壓住的數字的概率。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
第8屆中學生模擬聯合國大會將在本校舉行,為了搞好接待工作,組委會招募了12名男志愿者和18名女志愿者.將這30名志愿者的身高編成如下莖葉圖(單位:cm):
                       男             女
                               15    7  7  8  9  9  9
9  8   16    0  0  1  2  4  5  8  9
8  6  5  0   17    2  5  6
7  4  2  1   18    0 
1  0   19
若男生身高在180cm以上(包括180cm)定義為“高個子”, 在180cm以下(不包括180cm)定義為“非高個子”, 女生身高在170cm以上(包括170cm)定義為“高個子”,在170cm以下(不包括170cm)定義為“非高個子”.
(1)如果用分層抽樣的方法從“高個子”和“非高個子”中抽取6人,則應分別抽取“高個子”、“非高個子”各幾人?
(2)從(1)中抽出的6人中選2人擔任領座員,那么至少有一人是“高個子”的概率是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分14分)惠州市在每年的春節(jié)后,市政府都會發(fā)動公務員參與到植樹活動中去.林管部門在植樹前,為保證樹苗的質量,都會在植樹前對樹苗進行檢測.現從甲乙兩種樹苗中各抽測了10株樹苗的高度,量出的高度如下(單位:厘米)
甲:37,21,31,20,29,19,32,23,25,33
乙:10,30,47,27,46,14,26,10,44,46
(1)根據抽測結果,完成答題卷中的莖葉圖,并根據你填寫的莖葉圖,對甲、乙兩種樹苗的高度作比較,寫出兩個統(tǒng)計結論;

(2)設抽測的10株甲種樹苗高度平均值為,將這10株樹苗的高度依次輸入如圖程序框圖進行運算,問輸出的S大小為多少?并說明S的統(tǒng)計學意義.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

對甲、乙兩名自行車賽手在相同條件下進行了6次測試,測得他們的最大速度(m/s)的數據如下表.


27
38
30
37
35
31

33
29
38
34
28
36
 
(1)畫出莖葉圖,由莖葉圖判斷哪位選手的成績較穩(wěn)定?
(2)分別求出甲、乙兩名自行車賽手最大速度(m/s)數據的平均數、中位數、標準差,并判斷選誰參加比賽更合適.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題


三、解答題:解答應寫出文字說明、證明過程或演算步驟(本大題共6個大題,共76分)。
17.(12分)以下資料是一位銷售經理收集來的每年銷售額和銷售經驗年數的關系:

銷售經驗(年)
 
1
 
3
 
4
 
4
 
6
 
8
 
10
 
10
 
11
 
13
 
年銷售額(千元)
 
80
 
97
 
92
 
102
 
103
 
111
 
119
 
123
 
117
 
136
 
 (1)依據這些數據畫出散點圖并作直線=78+4.2x,計算(yii2; 
(2)依據這些數據由最小二乘法求線性回歸方程,并據此計算
(3)比較(1)和(2)中的殘差平方和的大。

查看答案和解析>>

同步練習冊答案