設(shè)Sn是公差不為0的等差數(shù)列{an}的前n項(xiàng)和,若a1=2a8-3a4,則 
s8
s16
=( 。
分析:根據(jù)a1=2a8-3a4,求出等差數(shù)列的首項(xiàng)與公差的關(guān)系,再利用等差數(shù)列的求和公式,即可得出結(jié)論.
解答:解:設(shè)等差數(shù)列的公差為d,則
∵a1=2a8-3a4,
∴a1=2(a1+7d)-3(a1+3d),
∴a1=
5
2
d
,
S8
S16
=
8a1+28d
16a1+120d
=
20d+28d
40d+120d
=
3
10

故選A.
點(diǎn)評(píng):本題考查等差數(shù)列的通項(xiàng)與求和,考查學(xué)生的計(jì)算能力,正確運(yùn)用等差數(shù)列的通項(xiàng)與求和公式是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)Sn是公差不為0的等差數(shù)列{an}的前n項(xiàng)和,且S1,S2,S4成等比數(shù)列,則
a2
a1
等于( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)Sn是公差不為0的等差數(shù)列{an}的前n項(xiàng)和,且S1,S2,S4成等比數(shù)列.
(1)求
a5a7
的值;
(2)若a5=3,求an及Sn的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)Sn是公差不為0的等差數(shù)列an的前n項(xiàng)和,且S1,S2,S4成等比數(shù)列.(1)求
a2a1
的值;(2)若a5=9,求an及Sn,的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練3練習(xí)卷(解析版) 題型:選擇題

設(shè)Sn是公差不為0的等差數(shù)列{an}的前n項(xiàng)和,S1,S2,S4成等比數(shù)列,等于(  )

(A)1 (B)2 (C)3 (D)4

 

查看答案和解析>>

同步練習(xí)冊(cè)答案