【題目】ABC,A,B,C所對的邊分別為a,b,c.滿足2acosC+bcosC+ccosB=0.

()求角C的大小;

()a=2,ABC的面積為,求C的大小。

【答案】12

【解析】試題分析:(1)先根據(jù)正弦定理將邊化為角,再根據(jù)誘導公式化簡得cosC=-,即得角C的大。唬2)先根據(jù)三角形面積公式得b,再根據(jù)余弦定理得c.

試題解析:解:(I)ABC,2acosC+bcosC+ccosB=0,

∴由正弦定理可得:2sinAcosC+sinBcosC+sinCcosB=0,

2sinAcosC+sin(B+C)=0,..

ABC,sin(B+C)=sinA≠0.cosC=-,.

0<C< .C=...

(II)S=absinC=,a=2,C=b=1.

由余弦定理得c=4+1-2×2×1×(-)=7,c=

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線,曲線,且的焦點之間的距離為,在第一象限的交點為

(1)求曲線的方程和點的坐標;

(2)若過點且斜率為的直線的另一個交點為,過點垂直的直線與的另一個交點為試求取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在貫徹中共中央國務院關于精準扶貧政策的過程中,某單位定點幫扶甲、乙兩個村各50戶貧困戶.為了做到精準幫扶,工作組對這100戶村民的年收入情況、勞動能力情況、子女受教育情況、危舊房情況、患病情況等進行調查,并把調查結果轉化為各戶的貧困指標,制成下圖,其中”表示甲村貧困戶,“”表示乙村貧困戶.若,則認定該戶為“絕對貧困戶”,若,則認定該戶為“相對貧困戶”,若,則認定該戶為“低收入戶”;若,則認定該戶為“今年能脫貧戶”,否則為“今年不能脫貧戶”.

1)從乙村的50戶中隨機選出一戶,求該戶為“絕對貧困戶”的概率;

(2)從甲村所有“今年不能脫貧的非絕對貧困戶”中任選2戶,求選出的2戶均為“低收入戶”的概率;

(3)試比較這100戶中,甲、乙兩村指標的方差的大。ㄖ恍鑼懗鼋Y論).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為的函數(shù)是奇函數(shù).

(1) 求實數(shù)的值;

(2) 判斷并用定義證明該函數(shù)在定義域上的單調性;

(3) 若方程內(nèi)有解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有以下判斷:①表示同一函數(shù);②函數(shù)的圖像與直線最多有一個交點;③不是函數(shù);④若點的圖像上,則函數(shù)的圖像必過點.其中正確的判斷有___________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABCA1B1C1,BC=BB1,BAC=BCA=ABC,EA1BAB1的交點,D在線段AC,B1C∥平面A1BD.

(1)求證:BDA1C;

(2)求證:AB1⊥平面A1BC。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面內(nèi)兩點

1)求的中垂線方程;

2)求過點且與直線平行的直線的方程;

3)一束光線從點射向(2)中的直線,若反射光線過點,求反射光線所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】國務院批準從2009年起,將每年88日設置為全民健身日”,為響應國家號召,各地利用已有土地資源建設健身場所.如圖,有一個長方形地塊,邊,.地塊的一角是草坪(圖中陰影部分),其邊緣線是以直線為對稱軸,以為頂點的拋物線的一部分.現(xiàn)要鋪設一條過邊緣線上一點的直線型隔離帶,分別在邊上(隔離帶不能穿越草坪,且占地面積忽略不計),將隔離出的作為健身場所.則的面積為的最大值為____________(單位:).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓 的左、右焦點、,其焦距為,點在橢圓的內(nèi)部,點是橢圓上的動點,且恒成立,則橢圓離心率的取值范圍是__________

查看答案和解析>>

同步練習冊答案