【題目】設(shè)矩形ABCD(AB>AD)的周長為24,把△ABC沿AC向△ADC折疊,AB折過去后交DC于點P,設(shè)AB=x,求△ADP的最大面積及相應(yīng)x的值.
【答案】解:由題意可知,矩形ABCD(AB>CD)的周長為24,
AB=x,即AD=12﹣x,
設(shè)PC=a,則DP=x﹣a,AP=a,而△ADP為直角三角形,
∴(12﹣x)2+(x﹣a)2=a2 ,
∴ ,
∴ ,
∴
= = .
當(dāng)且僅當(dāng) 時,即 ,此時 滿足AB>AD,
即 時△ADP取最大面積為 .
【解析】由題意可知,AB=x,即AD=12﹣x.設(shè)PC=a,則DP=x﹣a,AP=a,再根據(jù)△ADP為直角三角形,得出a關(guān)于x的表達(dá)式,再用三角形面積計算公式,得出△ADP的面積關(guān)于x的表達(dá)式,再利用基本不等式可得△ADP的面積的最大值及相應(yīng)的x的值.
【考點精析】本題主要考查了基本不等式的相關(guān)知識點,需要掌握基本不等式:,(當(dāng)且僅當(dāng)時取到等號);變形公式:才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌手機(jī)廠商推出新款的旗艦機(jī)型,并在某地區(qū)跟蹤調(diào)查得到這款手機(jī)上市時間(x個月)和市場占有率(y%)的幾組相關(guān)對應(yīng)數(shù)據(jù):
x | 1 | 2 | 3 | 4 | 5 |
y | 0.02 | 0.05 | 0.1 | 0.15 | 0.18 |
(1)根據(jù)上表中的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(2)根據(jù)上述回歸方程,分析該款旗艦機(jī)型市場占有率的變化趨勢,并預(yù)測自上市起經(jīng)過多少個月,該款旗艦機(jī)型市場占有率能超過0.5%(精確到月).
附: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,直線AB的方程為3x﹣2y﹣1=0,直線AC的方程為2x+3y﹣18=0.直線BC的方程為3x+4y﹣m=0(m≠25).
(1)求證:△ABC為直角三角形;
(2)當(dāng)△ABC的BC邊上的高為1時,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點,點是橢圓:上任意一點,線段的垂直平分線交于點,點的軌跡記為曲線.
(Ⅰ)求曲線的方程;
(Ⅱ)過的直線交曲線于不同的,兩點,交軸于點,已知,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù),.
(1)若,設(shè),試證明存在唯一零點,并求的最大值;
(2)若關(guān)于的不等式的解集中有且只有兩個整數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,已知內(nèi)角A,B,C所對的邊分別為a,b,c,向量m=(2sin B,- ),n=,且m∥n.
(1)求銳角B的大小;
(2)如果b=2,求△ABC的面積S△ABC的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】判斷下列命題是全稱命題還是存在性命題,并判斷其真假:
(1)對任意x∈R,zx>0(z>0);
(2)對任意非零實數(shù)x1,x2,若x1<x2,則;
(3)α∈R,使得sin(α+)=sin α;
(4)x∈R,使得x2+1=0.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com