在平面中△ABC的角C的內(nèi)角平分線CE分△ABC面積所成的比
S△ABC
S△BEC
=
AC
BC
,將這個結(jié)論類比到空間:在三棱錐A-BCD中,平面DEC平分二面角A-CD-B且與AB交于E,則類比的結(jié)論為______.
在平面中△ABC的角C的內(nèi)角平分線CE分△ABC面積所成的比
S△ABC
S△BEC
=
AC
BC

將這個結(jié)論類比到空間:在三棱錐A-BCD中,平面DEC平分二面角A-CD-B且與AB交于E,
則類比的結(jié)論為根據(jù)面積類比體積,長度類比面積可得:
VA-CDE
VB-CDE
=
S△ACD
S△BDC
,
故答案為:
VA-CDE
VB-CDE
=
S△ACD
S△BDC
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知命題:橢圓與雙曲線的焦距相等.試將此命題推廣到一般情形,使已知命題成為推廣后命題的一個特例:        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

觀察下列圖形(1)(2)(3)(4)設(shè)第n個圖形包含f(n)個小正方形.則f(5)=( 。
A.25B.37C.41D.47

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在平面內(nèi)圓具有性質(zhì)“經(jīng)過切點且垂直于切線的直線必過圓心”,將這一性質(zhì)類比到空間中球的性質(zhì)為“經(jīng)過切點且______”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在等差數(shù)列{an}中,若an>0,公差d>0,則有a4•a6>a3•a7,類比上述性質(zhì),在等比數(shù)列{bn}中,若bn>0,q>1,則b4,b5,b7,b8的一個不等關(guān)系是( 。
A.b4+b8>b5+b7B.b5+b7>b4+b8
C.b4+b7>b5+b8D.b4+b5>b7+b8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)面積為S的平面四邊形的第i條邊的邊長為ai(i=1,2,3,4),P是該四邊形內(nèi)一點,點P到第i條邊的距離記為hi,若
a1
1
=
a2
2
=
a3
3
=
a4
4
=k,則
4
i=1
(ihi=
2S
k
)
,類比上述結(jié)論,體積為V的三棱錐的第i個面的面積記為Si(i=1,2,3,4),Q是該三棱錐內(nèi)的一點,點Q到第i個面的距離記為di,若
S1
1
=
S2
2
=
S3
3
=
S4
4
=k,則
4
i=1
(idi)
等于______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

計算機是將信息轉(zhuǎn)換成二進制進行處理的,二進制即“逢二進一”,如(1101)2表示二進制數(shù),將它轉(zhuǎn)換成十進制形式是1×23+1×22+0×21+1×20=13,那么將二進制數(shù)(
111…1
16個1
)2
轉(zhuǎn)換成十進制形式是( 。
A.217-2B.216-2C.216-1D.215-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

用反證法證明某命題時,對結(jié)論:“自然數(shù)a,b,c中恰有一個偶數(shù)”正確的反設(shè)為(  )
A.a(chǎn),b,c中至少有兩個偶數(shù)
B.a(chǎn),b,c中至少有兩個偶數(shù)或都是奇數(shù)
C.a(chǎn),b,c都是奇數(shù)
D.a(chǎn),b,c都是偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

給出下面類比推理命題(其中Q為有理數(shù)集,R為實數(shù)集,C為復(fù)數(shù)集):
①“若”類比推出“
②“若”類比推出

③“若”類比推出“若
④“若”類比推出“若
其中類比結(jié)論正確的個數(shù)有                                                                                                      (   )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案