(本小題滿(mǎn)分13分)經(jīng)市場(chǎng)調(diào)查,某商場(chǎng)的一種商品在過(guò)去的一個(gè)月內(nèi)(以30天計(jì))銷(xiāo)售價(jià)格(元)與時(shí)間(天)的函數(shù)關(guān)系近似滿(mǎn)足為正的常數(shù)),日銷(xiāo)售量(件)與時(shí)間(天)的函數(shù)關(guān)系近似滿(mǎn)足,且第25天的銷(xiāo)售金額為13000元.
(1)求的值;
(2)試寫(xiě)出該商品的日銷(xiāo)售金額關(guān)于時(shí)間的函數(shù)關(guān)系式,并求前半個(gè)月銷(xiāo)售金額的最小值。
(1);(2= ,有最小值12100 元。

試題分析:(1)由題意,得,即,
解得……4分
(2) 
= ……9分
當(dāng)時(shí),上單調(diào)減,在上單調(diào)增
所以當(dāng)時(shí),有最小值12100 元……………13分
點(diǎn)評(píng):研究數(shù)學(xué)模型,建立數(shù)學(xué)模型,進(jìn)而借鑒數(shù)學(xué)模型,對(duì)提高解決實(shí)際問(wèn)題的能力,以及提高數(shù)學(xué)素養(yǎng)都是十分重要的.建立模型的步驟可分為: (1) 分析問(wèn)題中哪些是變量,哪些是常量,分別用字母表示; (2) 根據(jù)所給條件,運(yùn)用數(shù)學(xué)知識(shí),確定等量關(guān)系; (3) 寫(xiě)出的解析式并指明定義域。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分)
若函數(shù)對(duì)任意的實(shí)數(shù),,均有,則稱(chēng)函數(shù)是區(qū)間上的“平緩函數(shù)”.  
(1) 判斷是不是實(shí)數(shù)集R上的“平緩函數(shù)”,并說(shuō)明理由;
(2) 若數(shù)列對(duì)所有的正整數(shù)都有 ,設(shè),
求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)如果函數(shù)的單調(diào)減區(qū)間為,求函數(shù)的解析式;
(2)在(1)的條件下,求函數(shù)的圖像過(guò)點(diǎn)的切線(xiàn)方程;
(3)證明:對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)函數(shù)在區(qū)間的導(dǎo)函數(shù)為在區(qū)間的導(dǎo)函數(shù)為若在區(qū)間恒成立,則稱(chēng)函數(shù)在區(qū)間上為“凸函數(shù)”,已知,若對(duì)任意的實(shí)數(shù)m滿(mǎn)足時(shí),函數(shù)在區(qū)間上為“凸函數(shù)”,則的最大值為(   )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

對(duì)于函數(shù),給出下列四個(gè)命題:①該函數(shù)是以為最小正周期的周期函數(shù);②當(dāng)且僅當(dāng) (k∈Z)時(shí),該函數(shù)取得最小值-1;
③該函數(shù)的圖象關(guān)于 (k∈Z)對(duì)稱(chēng);
④當(dāng)且僅當(dāng) (k∈Z)時(shí),0<.
其中正確命題的序號(hào)是_______   (請(qǐng)將所有正確命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列四組函數(shù)中,表示相同函數(shù)的一組是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)函數(shù)為奇函數(shù),且在上為增函數(shù),  , 若對(duì)所有都成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

定義新運(yùn)算“&”與“”:,,則函數(shù) 
是(  )
A.奇函數(shù)B.偶函數(shù)
C.非奇非偶函數(shù)D.既是奇函數(shù)又是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

定義:若函數(shù)對(duì)于其定義域內(nèi)的某一數(shù),有,則稱(chēng)的一個(gè)不動(dòng)點(diǎn). 已知函數(shù).
(1)當(dāng),時(shí),求函數(shù)的不動(dòng)點(diǎn);
(2)若對(duì)任意的實(shí)數(shù)b,函數(shù)恒有兩個(gè)不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍;
(3)在(2)的條件下,若圖象上兩個(gè)點(diǎn)A、B的橫坐標(biāo)是函數(shù)的不動(dòng)點(diǎn),且線(xiàn)段AB的中點(diǎn)C在函數(shù)的圖象上,求實(shí)數(shù)b的最小值.
(參考公式:若,則線(xiàn)段AB的中點(diǎn)坐標(biāo)為)

查看答案和解析>>

同步練習(xí)冊(cè)答案