已知數(shù)列{an}滿足log3an+1=log3an+1(nN*)a2+a4+a6=9,lo(a5+a7+a9)的值是(  )

(A)-5(B)-(C)5(D)

 

A

【解析】【思路點撥】根據(jù)數(shù)列滿足log3an+1=log3an+1(nN*)a2+a4+a6=9可以確定數(shù)列是公比為3的等比數(shù)列,再根據(jù)等比數(shù)列的通項公式即可通過a2+a4+a6=9求出a5+a7+a9的值.

:log3an+1=log3an+1(nN*),an+1=3an,又因為an>0,所以數(shù)列{an}是公比為3的等比數(shù)列,a5+a7+a9=(a2+a4+a6)×33=35,所以lo(a5+a7+a9)=-log335=-5.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)三十四第五章第五節(jié)練習(xí)卷(解析版) 題型:填空題

設(shè)數(shù)列{an},a1=2,an+1=an+n+1,則通項an=   .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)三十八第六章第四節(jié)練習(xí)卷(解析版) 題型:選擇題

設(shè)0<a<b,則下列不等式中正確的是(  )

(A)a<b<< (B)a<<<b

(C)a<<b< (D)<a<<b

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)三十二第五章第三節(jié)練習(xí)卷(解析版) 題型:解答題

已知數(shù)列{an}滿足a1=1,an=3n-1+an-1(n2).

(1)a2,a3.(2)求通項公式an.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)三十二第五章第三節(jié)練習(xí)卷(解析版) 題型:填空題

已知等比數(shù)列{an}的首項為2,公比為2,=   .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)三十九第六章第五節(jié)練習(xí)卷(解析版) 題型:解答題

某少數(shù)民族的刺繡有著悠久的歷史,如圖(1)(2)(3)(4)為她們刺繡最簡單的四個圖案,這些圖案都由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個圖形包含f(n)個小正方形.

(1)求出f(5).

(2)利用合情推理的“歸納推理思想”歸納出f(n+1)f(n)的關(guān)系式,并根據(jù)你得到的關(guān)系式求f(n)的關(guān)系式.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)三十九第六章第五節(jié)練習(xí)卷(解析版) 題型:選擇題

若在曲線f(x,y)=0上存在兩個不同點處的切線重合,則稱這條切線為曲線f(x,y)=0的“自公切線”.下列方程:x2-y2=1;y=x2-|x|;y=3sinx+4cosx;|x|+1=對應(yīng)的曲線中存在“自公切線”的有(  )

(A)①② (B)②③

(C)①④ (D)③④

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)三十三第五章第四節(jié)練習(xí)卷(解析版) 題型:選擇題

數(shù)列{an}的前n項和Sn=2n-1,++++等于(  )

(A)(2n-1)2(B)(2n-1)2

(C)4n-1(D)(4n-1)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)三十一第五章第二節(jié)練習(xí)卷(解析版) 題型:選擇題

在等差數(shù)列{an},已知a4+a8=16,a2+a10=(  )

(A)12(B)16(C)20(D)24

 

查看答案和解析>>

同步練習(xí)冊答案