已知函數(shù)
(1)若函數(shù)的圖象切x軸于點(diǎn)(2,0),求a、b的值;
(2)設(shè)函數(shù)的圖象上任意一點(diǎn)的切線斜率為k,試求的充要條件;
(3)若函數(shù)的圖象上任意不同的兩點(diǎn)的連線的斜率小于l,求證

(1),;(2);(3)

解析試題分析:(1)由函數(shù)的圖象切x軸于點(diǎn)(2,0),得,解方程組可得的值.
(2)由于,根據(jù)導(dǎo)數(shù)的幾何意義,任意不同的兩點(diǎn)的連線的斜率小于l,對(duì)任意的恒成立,利用分離變量法,轉(zhuǎn)化為對(duì)任意的恒成立,進(jìn)一步轉(zhuǎn)化為函數(shù)的最值問題;
(3)設(shè),則
對(duì)恒成立
將上不等式看成是關(guān)于的一元二次不等式即可.
解:(1)
,得,
,得
(2)
對(duì)任意的,即對(duì)任意的恒成立
等價(jià)于對(duì)任意的恒成立


,當(dāng)且僅當(dāng)時(shí)“=”成立,
上為增函數(shù),

(3)設(shè),則
,對(duì)恒成立
,對(duì)恒成立
,對(duì)恒成立

解得
考點(diǎn):1、導(dǎo)數(shù)的幾何意義;2、等價(jià)轉(zhuǎn)化的思想;3、二次函數(shù)與一元二次一不等式問題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中.
(1)是否存在實(shí)數(shù),使得函數(shù)上單調(diào)遞增?若存在,求出的值或取值范圍;否則,請(qǐng)說明理由.
(2)若a<0,且函數(shù)y=f(x)的極小值為,求函數(shù)的極大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)試判斷函數(shù)的單調(diào)性,并說明理由;
(2)若恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)當(dāng) 時(shí),求處的切線方程;
(2)設(shè)函數(shù),
(ⅰ)若函數(shù)有且僅有一個(gè)零點(diǎn)時(shí),求的值;
(ⅱ)在(ⅰ)的條件下,若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)設(shè)函數(shù),當(dāng)時(shí),討論的單調(diào)性;
(2)若函數(shù)處取得極小值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某公司經(jīng)銷某種產(chǎn)品,每件產(chǎn)品的成本為6元,預(yù)計(jì)當(dāng)每件產(chǎn)品的售價(jià)為元()時(shí),一年的銷售量為萬件。
(1)求公司一年的利潤y(萬元)與每件產(chǎn)品的售價(jià)x的函數(shù)關(guān)系;
(2)當(dāng)每件產(chǎn)品的售價(jià)為多少時(shí),公司的一年的利潤y最大,求出y最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)時(shí)取得極小值.
(1)求實(shí)數(shù)的值;
(2)是否存在區(qū)間,使得在該區(qū)間上的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ae/c/tcyos1.png" style="vertical-align:middle;" />?若存在,求出,的值;
若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)設(shè)x=0是f(x)的極值點(diǎn),求m,并討論f(x)的單調(diào)性;
(2)當(dāng)m≤2時(shí),證明f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(1)若,試判斷并用定義證明函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),求函數(shù)的最大值的表達(dá)式

查看答案和解析>>

同步練習(xí)冊(cè)答案