【題目】某地一條主于道上有46盞路燈,相鄰兩盞路燈之間間隔30米,有關(guān)部門想在所有相鄰路燈間都新添一盞,假設(shè)工人每次在兩盞燈之間添新路燈是隨機,并且每次添新路燈相互獨立.新添路燈與左右相鄰路燈的間隔都不小于10米是符合要求的,記符合要求的新添路燈數(shù)量為,則

A.30B.15C.10D.5

【答案】C

【解析】

先由題意求出每次添路燈符合要求的概率,由于服從二項分布,再利用公式可得結(jié)果.

解:因為工人每次在兩盞燈之間添新路燈是隨機,并且每次添新路燈相互獨立,

所以符合要求的新添路燈數(shù)量為服從二項分布,

因為相鄰兩盞路燈之間間隔30米,且新添路燈與左右相鄰路燈的間隔都不小于10米是符合要求的,所以每次添路燈符合要求的概率,

由題可知要添路燈45盞路燈, 則,

所以

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,上頂點為A,右頂點為B.在橢圓C內(nèi),且直線與直線垂直.

1)求C的方程;

2)設(shè)過點P的直線交CM,N兩點,求證:以為直徑的圓過點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《周易》是我國古代典籍,用描述了天地世間萬象變化.如圖是一個八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個爻組成,其中表示一個陽爻,表示一個陰爻).若從八卦中任取兩卦,這兩卦的六個爻中恰有一個陽爻的概率為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】法國的數(shù)學(xué)家費馬(PierredeFermat)曾在一本數(shù)學(xué)書的空白處寫下一個看起來很簡單的猜想:當(dāng)整數(shù)時,找不到滿足的正整數(shù)解.該定理史稱費馬最后定理,也被稱為費馬大定理.費馬只是留下這個敘述并且說他已經(jīng)發(fā)現(xiàn)這個定理的證明妙法,只是書頁的空白處不夠無法寫下.費馬也因此為數(shù)學(xué)界留下了一個千古的難題,歷經(jīng)數(shù)代數(shù)學(xué)家們的努力,這個難題直到1993年才由我國的數(shù)學(xué)家毛桂成完美解決,最終證明了費馬大定理的正確性.現(xiàn)任取,則等式成立的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解市民對電視劇市場的愛好,某上星電視臺邀請了100位電視劇愛好者(男50人、女50人)對4月份觀看其播出的電視劇集數(shù)進行調(diào)研,得到這100名電視劇愛好者觀看集數(shù)的中位數(shù)為39集(假設(shè)這100名電視劇愛好者的觀看集數(shù)均在集內(nèi)),且觀看集數(shù)在集內(nèi)的人數(shù)為15,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖.

1)求,的值;

2)有些觀眾喜歡帶有主角光環(huán)意識來觀劇.但是最近幾年的影視作品里出現(xiàn)了一個有趣的趨勢——攻氣十足的女性角色越來越討人喜歡,傻白甜的女主們則破了主角光環(huán),各種被嫌棄,更有些劇集中明明是女配的腳本,卻因為更具有大女主氣場,而獲得了比主角更多的關(guān)注與聲量,如《完美關(guān)系》里的斯黛拉,《精英律師》里的栗娜,《我的前半生》里的唐晶,……已知在這100名電視劇愛好者的女性中有31名認為自己有主角光環(huán)意識,男性中有19名認為自己有主角光環(huán)意識,根據(jù)以上數(shù)據(jù)請同學(xué)們制作出列聯(lián)表,并且判斷能否在犯錯誤的概率不超過0.001的前提下認為性別與是否觀劇帶有主角光環(huán)意識有關(guān)系?

參考公式及數(shù)據(jù):,其中.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】武漢某商場為促進市民消費,準備每周隨機的從十個熱門品牌中抽取一個品牌送消費券,并且某個品牌被抽中后不再參與后面的抽獎,沒有抽中的品牌則繼續(xù)參加下周抽獎,假設(shè)每次抽取時各品牌被抽到的可能性相同,每次抽取也相互獨立.

1)求某品牌到第三次才被抽到的概率;

2)為了使更多品牌參加活動,商場做出調(diào)整,從第一周抽取后開始每周會有一個新的品牌補充進抽取隊伍,品牌A從第一周就開始參加抽獎,商場準備開展半年(按26周計算)的抽獎活動,記品牌A參與抽獎的次數(shù)為X,試求X的數(shù)學(xué)期望(精確到0.01.

參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020110日,中國工程院院士黃旭華和中國科學(xué)院院士曾慶存榮獲2019年度國家最高科學(xué)技術(shù)獎.曾慶存院士是國際數(shù)值天氣預(yù)報奠基人之一,他的算法是世界數(shù)值天氣預(yù)報核心技術(shù)的基礎(chǔ),在氣象預(yù)報中,過往的統(tǒng)計數(shù)據(jù)至關(guān)重要,如圖是根據(jù)甲地過去50年的氣象記錄所繪制的每年高溫天數(shù)(若某天氣溫達到35 ℃及以上,則稱之為高溫天)的頻率分布直方圖.若某年的高溫天達到15天及以上,則稱該年為高溫年,假設(shè)每年是否為高溫年相互獨立,以這50年中每年高溫天數(shù)的頻率作為今后每年是否為高溫年的概率.

1)求今后4年中,甲地至少有3年為高溫年的概率.

2)某同學(xué)在位于甲地的大學(xué)里勤工儉學(xué),成為了校內(nèi)奶茶店(消費區(qū)在戶外)的店長,為了減少高溫年帶來的損失,該同學(xué)現(xiàn)在有兩種方案選擇:方案一:不購買遮陽傘,一旦某年為高溫年,則預(yù)計當(dāng)年的收入會減少6000元;方案二:購買一些遮陽傘,費用為5000元,可使用4年,一旦某年為高溫年,則預(yù)計當(dāng)年的收入會增加1000.4年為期,試分析該同學(xué)是否應(yīng)該購買遮陽傘?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角系中,點A為曲線C在第一象限的圖象上的動點,點E,G在曲線C的準線上,且點Gx軸的下方,圓O與準線相切,直線交曲線C于點B,交圓O于點DH.

1)當(dāng)點H為曲線C的焦點,時,求;

2)當(dāng)點O的內(nèi)心時,若,求點A的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一對夫婦為了給他們的獨生孩子支付將來上大學(xué)的費用,從孩子一周歲生日開始,每年到銀行儲蓄元一年定期,若年利率為保持不變,且每年到期時存款(含利息)自動轉(zhuǎn)為新的一年定期,當(dāng)孩子18歲生日時不再存入,將所有存款(含利息)全部取回,則取回的錢的總數(shù)為  

A.B.

C.D.

查看答案和解析>>

同步練習(xí)冊答案