(本小題滿分14分)
如圖,已知橢圓的離心率為,短軸的一個(gè)端點(diǎn)到右焦點(diǎn)的距離為.設(shè)直線與橢圓相交于兩點(diǎn),點(diǎn)關(guān)于軸對(duì)稱點(diǎn)為
(1)求橢圓的方程;
(2)若以線段為直徑的圓過坐標(biāo)原點(diǎn),求直線的方程;
(3)試問:當(dāng)變化時(shí),直線軸是否交于一個(gè)定點(diǎn)?若是,請(qǐng)寫出定點(diǎn)的坐標(biāo),并證明你的結(jié)論;若不是,請(qǐng)說明理由.
解:(1)由題意可得,解得
所以橢圓的方程為…………(4分)
(2)由
設(shè),則…………(5分)
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082317191947972.gif" style="vertical-align:middle;" />以線段為直徑的圓過坐標(biāo)原點(diǎn),即
所以,
………………(7分)
所以

故所求直線的方程為…………(9分)
(3)由(2)知:
則直線的方程為,令,得…………(11分)

…………(13分)
這說明,當(dāng)變化時(shí),直線軸交于定點(diǎn)…………(14分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

13分)
已知橢圓(a>b>0)的離心率,過點(diǎn)A(0,-b)和B(a,0)的直線與原點(diǎn)的距離為
(1)求橢圓的方程.
(2)已知定點(diǎn)E(-1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點(diǎn).問:是否存在k的值,使以CD為直徑的圓過E點(diǎn)?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分15分)
如圖,橢圓方程為,為橢圓上的動(dòng)點(diǎn),為橢圓的兩焦點(diǎn),當(dāng)點(diǎn)不在軸上時(shí),過的外角平分線的垂線,垂足為,當(dāng)點(diǎn)軸上時(shí),定義重合。

(Ⅰ)求點(diǎn)的軌跡的方程;
(Ⅱ)已知、,試探究是否存在這樣的點(diǎn):點(diǎn)是軌跡內(nèi)部的整點(diǎn)(平面內(nèi)橫、縱坐標(biāo)均為整數(shù)的點(diǎn)稱為整點(diǎn)),且的面積?若存在,求出點(diǎn)的坐標(biāo),若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓,分別為左,右焦點(diǎn),離心率為,點(diǎn)在橢圓上,, ,過與坐標(biāo)軸不垂直的直線交橢圓于兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)在線段上是否存在點(diǎn),使得以線段為鄰邊的四邊形是菱形?若存在,求出實(shí)數(shù)的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分15分)
如圖已知,橢圓的左、右焦點(diǎn)分別為、,過的直線與橢圓相交于A、B兩點(diǎn)。
(Ⅰ)若,且,求橢圓的離心率;
(Ⅱ)若的最大值和最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,過橢圓上的動(dòng)點(diǎn)的兩條切線,其中分別為切點(diǎn),,若橢圓上存在點(diǎn),使,則該橢圓的離心率為____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

. 已知橢鞏上一點(diǎn)P到其左準(zhǔn)線的距離為10,F是該橢圓的左焦點(diǎn),若點(diǎn)M滿足(其中O為坐標(biāo)原點(diǎn)),則=_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)橢圓的長軸兩端點(diǎn)為、,異于、的點(diǎn)在橢圓上,則 的斜率之積為            .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過點(diǎn)P(,-2),Q(-2,1)兩點(diǎn)的橢圓標(biāo)準(zhǔn)方程是______

查看答案和解析>>

同步練習(xí)冊(cè)答案