【題目】設(shè)點P(x,y)是曲線a|x|+b|y|=1(a≥0,b≥0)上任意一點,其坐標(x,y)均滿足 ,則 a+b取值范圍為(
A.(0,2]
B.[1,2]
C.[1,+∞)
D.[2,+∞)

【答案】D
【解析】解:曲線a|x|+b|y|=1(a≥0,b≥0),
當x,y≥0時,化為ax+by=1;當x≥0,y≤0時,化為ax﹣by=1;當x≤0,y≥0時,化為﹣ax+by=1;當x≤0,y≤0時,
化為﹣ax﹣by=1.畫出圖象:表示菱形ABCD.
,
+
設(shè)M(﹣1,0),N(1,0),
則2|PM|≤2 ,|BD|≤2
, ,
解得b≥1, ,
a+b≥1+1=2.
a+b取值范圍為[2,+∞).
故選:D.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an},滿足d>0,且a1+a2+a3=9,a1a3=5
(1)求{an}的通項公式;
(2)若數(shù)列{bn}滿足bn= ,Sn為數(shù)列{bn}的前n項和,證明:Sn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線 ,(1)求證:不論實數(shù) 取何值,直線 總經(jīng)過一定點.為使直線不經(jīng)過第二象限(2)求實數(shù) 的取值范圍(3)若直線 與兩坐標軸的正半軸圍成的三角形面積最小,求 的方程.
(1)求證:不論實數(shù) 取何值,直線 總經(jīng)過一定點.
(2)為使直線不經(jīng)過第二象限,求實數(shù) 的取值范圍.
(3)若直線 與兩坐標軸的正半軸圍成的三角形面積最小,求 的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sinxcosx+2 cos2x﹣
(1)求函數(shù)f(x)的單調(diào)減區(qū)間;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,已知a=1,b= ,f(A﹣ )= ,求角C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,直線l的參數(shù)方程為 (t為參數(shù)),在以直角坐標系的原點O為極點,x軸的正半軸為極軸的極坐標系中,曲線C的極坐標方程為ρ=
(1)求曲線C的直角坐標方程和直線l的普通方程;
(2)若直線l與曲線C相交于A,B兩點,求△AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y2=4x和點M(6,0),O為坐標原點,直線l過點M,且與拋物線交于A,B兩點.
(1)求 ;
(2)若△OAB的面積等于12 ,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的不等式).

(1)若不等式的解集為,求, 的值;

(2)求不等式)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列{an}中,a1=1,Sn+1=4an+2,則a2013的值為(
A.3019×22012
B.3019×22013
C.3018×22012
D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與拋物線 相交于, 兩點, 是線段的中點,過軸的垂線交于點.

(Ⅰ)證明:拋物線在點處的切線與平行;

(Ⅱ)是否存在實數(shù)使?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案