已知數(shù)列{an}的前n項和為Sn,且Sn=2an-2(n∈N*),數(shù)列{bn}滿足b1=1,且bn+1=bn+2
(1)求數(shù)列{an}、{bn}的通項公式;
(2)求數(shù)列{an•bn}的前n項和Tn
考點:數(shù)列的求和,數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知條件推導(dǎo)出{an}是首項為2,公比為2的等比數(shù)列,所以an=2n.{bn}是首項為1,公差為2 的等差數(shù)列,所以bn=2n-1.
(2)由an•bn=(2n-1)•2n,利用錯位相減法能求出數(shù)列{an•bn}的前n項和Tn
解答: 解:(1)∵Sn=2an-2,
∴n=1時,a1=2a1-2,解得a1=2,
n≥2時,an=Sn-Sn-1=(2an-2)-(2an-1-2)=2an-2an-1
∴an=2an-1,
∴{an}是首項為2,公比為2的等比數(shù)列,
an=2n
∵數(shù)列{bn}滿足b1=1,且bn+1=bn+2,
∴{bn}是首項為1,公差為2 的等差數(shù)列,
∴bn=1+(n-1)×2=2n-1.
(2)∵an•bn=(2n-1)•2n
Tn=1•2+3•22+…+(2n-1)•2n,①
2Tn=1•22+3•23+…+(2n-1)•2n+1,②
①-②,得-Tn=1×21+2(22+23+…+2n)-(2n-1)•2n+1
=2+2×
4(1-2n-1)
1-2
-(2n-1)•2n+1
=2n+1(3-2n)-6
∴Tn=(2n-3)2n+1+6
點評:本題考查數(shù)列的通項公式的求法,考查數(shù)列的前n項和的求法,解題時要認(rèn)真審題,注意錯位相減法的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z滿足z=
2i
1+
3
i
(i為虛數(shù)單位),則z的共軛復(fù)數(shù)的虛部是( 。
A、
3
2
B、-
3
2
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
y2
a2
+
x2
b2
=1(a>b>0)的上、下焦點分別為F1,F(xiàn)2,短軸的兩個端點分別為A,B且四邊形F1AF2B是邊長為2的正方形.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線l的斜率為
2
,若直線l與橢圓交于P,Q兩點,O為坐標(biāo)原點,求△OPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,對于一條折線C:A1-A2-…-An,若能再作出一條折線C′:A1-B2-B3-…-Bn-1-An,使得A1B2⊥A1A2,B2B3⊥A2A3,…,Bn-1An⊥An-1An(其中A1,A2,A3,…,An,B2,B3,…,Bn-1都是整點),則稱折線C′是折線C的一條共軛折線(說明:橫、縱坐標(biāo)均為整數(shù)的點成為整點).
(Ⅰ)請分別判斷圖(1),(2)中,虛折線是否是實折線的一條個,共軛折線;

(Ⅱ)試判斷命題“對任意的n∈N且n>2,總存在一條折線C:A1-A2-…-An有共軛折線”的真假,并舉例說明;
(Ⅲ)如圖(3),折線C:A1-A2-A3-A4,其中A1(0,0),A2(3,1),A3(6,0),A4(9,1).求證:折線C無共軛折線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平行四邊形ABCD中,AB=2,AD=2
2
,∠BAD=45°,以BD為折線,把△ABD折起,使平面ABD⊥平面CBD,連結(jié)AC.

(Ⅰ)求證:AB⊥DC;
(Ⅱ)求二面角B-AC-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=3x2-2x,數(shù)列{an}的前n項和為Sn,點(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖象上.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=
3
anan+1
,Tn是數(shù)列{bn}的前n項和,求使得Tn
m
20
對所有n∈N*都成立的最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=-
a
2
x2+(a+1)x-lnx(a∈R).
(1)當(dāng)a=0時,求函數(shù)f(x)的極值;
(2)當(dāng)a>0時,討論函數(shù)f(x)的單調(diào)性;
(3)若對任意a∈(2,3)及任意x1,x2∈[1,2],恒有
a2-1
2
m+ln2>|f(x1)-f(x2)|成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

利用函數(shù)的單調(diào)性比較大小:
(1)sin508°與sin144°;         
(2)cos760°與cos(-770°)
(3)tan(-
π
5
)與tan(-
7
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cos
3
2
x,sin
3
2
x),
b
=(cos
x
2
,-sin
x
2
),且x∈[0,
π
2
],
(1)求
a
b
及|
a
+
b
|;
(2)求函數(shù)f(x)=
a
b
-2|
a
+
b
|的最小值;
(3)若f(x)=
a
b
-λ|
a
+
b
|的最小值是-
3
2
,求實數(shù)λ的值.

查看答案和解析>>

同步練習(xí)冊答案