【題目】已知函數(shù)f(x),當(dāng)x,y∈R時,恒有f(x+y)=f(x)+f(y).當(dāng)x>0時,f(x)>0
(1)求證:f(x)是奇函數(shù);
(2)若f(1)= ,試求f(x)在區(qū)間[﹣2,6]上的最值.

【答案】
(1)證明:令x=0,y=0,則f(0)=2f(0),

∴f(0)=0.令y=﹣x,則f(0)=f(x)+f(﹣x),

∴f(x)=f(﹣x),即f(x)為奇函數(shù)


(2)解:任取x1,x2∈R,且x1<x2

∵f(x+y)=f(x)+f(y),

∴f(x2)﹣f(x1)=f(x2﹣x1),

∵當(dāng)x>0時,f(x)>0,且x1<x2,

∴f(x2﹣x1)>0,

即f(x2)>f(x1),

∴f(x)為增函數(shù),

∴當(dāng)x=﹣2時,函數(shù)有最小值,f(x)min=f(﹣2)=﹣f(2)=﹣2f(1)=﹣1.

當(dāng)x=6時,函數(shù)有最大值,f(x)max=f(6)=6f(1)=3


【解析】(1)在給出的等式中取x=y=0,求得f(0)=0,再取y=﹣x可證明f(x)是奇函數(shù);(2)利用函數(shù)單調(diào)性的定義,借助于已知等式證明函數(shù)f(x)為增函數(shù),從而求出函數(shù)在給定區(qū)間上的最值.
【考點精析】根據(jù)題目的已知條件,利用函數(shù)的最值及其幾何意義和函數(shù)奇偶性的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲担焕脠D象求函數(shù)的最大(。┲担焕煤瘮(shù)單調(diào)性的判斷函數(shù)的最大(。┲;在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,平面AED平面ABCD,EFAB,AB=2,BC=EF=1,AE=,DE=3,BAD=60,G為BC的中點.

(1)求證:FG平面BED;

(2)求證:平面BED平面AED;

(3)求直線EF與平面BED所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{an}是一個等差數(shù)列且a2+a8=﹣4a6=2

1)求{an}的通項公式;

2)求{an}的前n項和Sn的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,過上一點的切線的方程為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)過點且斜率不為的直線交橢圓于兩點,試問軸上是否存在點,使得?若存在,求出點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點,焦點在軸上,橢圓的短軸端點和焦點所組成的四邊形為正方形,且橢圓上任意一點到兩個焦點的距離之和為

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)若直線與橢圓相交于兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓 的離心率,且橢圓上一點到點的距離的最大值為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè) 為拋物線 上一動點,過點作拋物線的切線交橢圓兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)fk(x)=xk+bx+c(k∈N* , b,c∈R),g(x)=logax(a>0,a≠1).
(1)若b+c=1,且fk(1)=g( ),求a的值;
(2)若k=2,記函數(shù)fk(x)在[﹣1,1]上的最大值為M,最小值為m,求M﹣m≤4時的b的取值范圍;
(3)判斷是否存在大于1的實數(shù)a,使得對任意x1∈[a,2a],都有x2∈[a,a2]滿足等式:g(x1)+g(x2)=p,且滿足該等式的常數(shù)p的取值唯一?若存在,求出所有符合條件的a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左頂點為A,右焦點為F,過點F的直線交橢圓于B,C兩點.

(1)求該橢圓的離心率;

(2)設(shè)直線ABAC分別與直線x=4交于點MN,問:x軸上是否存在定點P使得MPNP?若存在,求出點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓與雙曲線有相同的焦點,橢圓的一個短軸端點為,直線與雙曲線的一條漸近線平行,若橢圓于雙曲線的離心率分別為,,則的最小值為__________

查看答案和解析>>

同步練習(xí)冊答案