已知三棱錐A-BCO,OA、OB、OC兩兩垂直且長度均為6,長為2的線段MN的一個端點M在棱OA上運動,另一個端點N在△BCO內(nèi)運動(含邊界),則MN的中點P的軌跡與三棱錐的面所圍成的幾何體的體積為( )

A.
B.或36+
C.36-
D.或36-
【答案】分析:由于長為2的線段MN的一個端點M在棱OA上運動,另一個端點N在△BCO內(nèi)運動(含邊界),有空間想象能力可知MN的中點P的軌跡為以O(shè)為球心,以1為半徑的球體,故MN的中點P的軌跡與三棱錐的面所圍成的幾何體的體積,利用體積分割及球體的體積公式即可.
解答:解:因為長為2的線段MN的一個端點M在棱OA上運動,另一個端點N在△BCO內(nèi)運動(含邊界),
   有空間想象能力可知MN的中點P的軌跡為以O(shè)為球心,以1為半徑的球體,則MN的中點P的軌跡與三棱錐的面所圍成的幾何體可能為該球體的或該三棱錐減去此球體的,即:
故選D
點評:此題考查了學(xué)生的空間想象能力,還考查了球體,三棱錐的體積公式即計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013年中國人民大學(xué)附中高考數(shù)學(xué)沖刺試卷08(理科)(解析版) 題型:選擇題

已知三棱錐A-BCO,OA、OB、OC兩兩垂直且長度均為6,長為2的線段MN的一個端點M在棱OA上運動,另一個端點N在△BCO內(nèi)運動(含邊界),則MN的中點P的軌跡與三棱錐的面所圍成的幾何體的體積為( )

A.
B.或36+
C.36-
D.或36-

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年北京市懷柔區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:選擇題

已知三棱錐A-BCO,OA、OB、OC兩兩垂直且長度均為6,長為2的線段MN的一個端點M在棱OA上運動,另一個端點N在△BCO內(nèi)運動(含邊界),則MN的中點P的軌跡與三棱錐的面所圍成的幾何體的體積為( )

A.
B.或36+
C.36-
D.或36-

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鐑芥嚄閼哥數浠氬┑掳鍊楁慨瀵告崲濮椻偓閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾捐鈹戦悩鍙夋悙缂佺媭鍨堕弻銊╂偆閸屾稑顏�